Introduction to deterministic models in ecology and evolution

Frédéric Hamelin

- 1. Introduction to dynamical systems in ecology
- 2. Introduction to **resilience** in ecological systems
- 3. Introduction to evolutionary invasion analysis

Introduction to dynamical systems in ecology

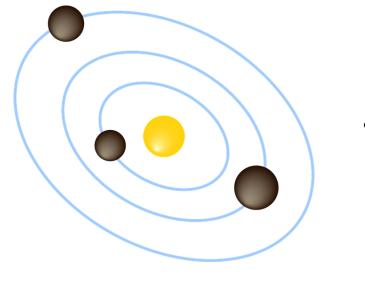
Frédéric Hamelin

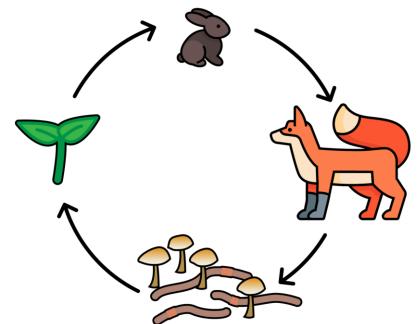
System?

• A set of interconnected elements interacting together

solar system

ecosystem





EXOFICTIONS ACTES SUL

Outline

- Can the dynamics of a system be predicted?
 - 1. One-body problem (one species)
 - 2. Two-body problem (two species)
 - 3. Three-body problem (three species)
- Notions of equilibrium and stability
 - Dimension 1
 - 2. Dimension 2
- Notion of bistability
- Notion of transient dynamics

Can the dynamics of a system be predicted?

1. One-body problem (one species)

Non-overlapping genererations

- discrete time

- Time: *t*
- Population density: N(t)

[number of individuals per unit area]

- Initial density: $N(0) = N_0$
- Progeny number per individual: R
- Population dynamics:

 $N(t+1) = R \times N(t)$

• Solution:

 $N(t) = R^t \times N_0$

[indep. variable]

[state variable]

[initial condition]

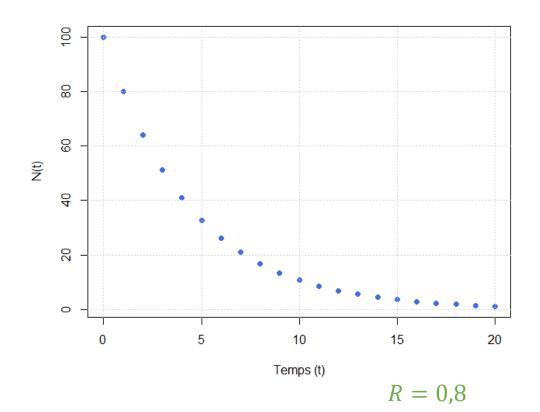
[parameter]

[recurrence eq.]

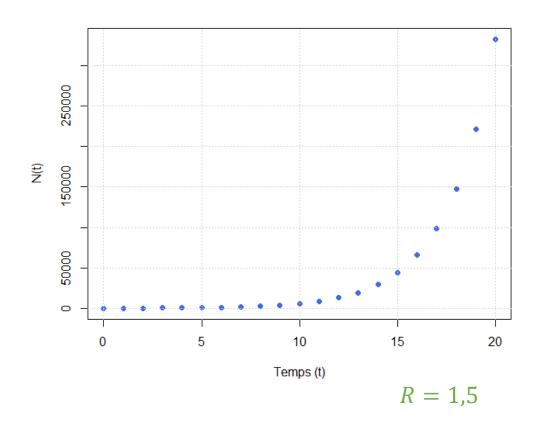
[geom. growth]

Geometric growth: $N(t) = R^t \times N_0$

If R < 1, pop. decreases down to extinction



If R > 1, pop. increases limitless



Overlapping generations

- continuous time

- Time: *t*
- Population density: N(t)

[number of individual per unit area]

- Initial density: $N(0) = N_0$
- Net reproduction per indiv. per unit time: *r*
- Rate of change of pop. density per unit time:

$$\frac{dN}{dt}(t) = rN(t)$$

Solution:

$$N(t) = e^{rt} \times N_0$$

[indep. variable]

[state variable]

[initial condition]

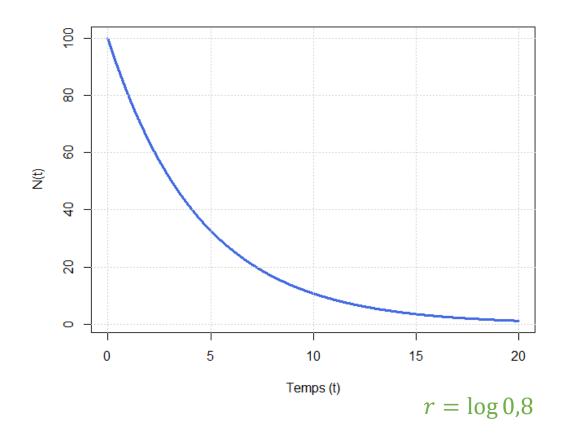
[parameter]

[differential eq.]

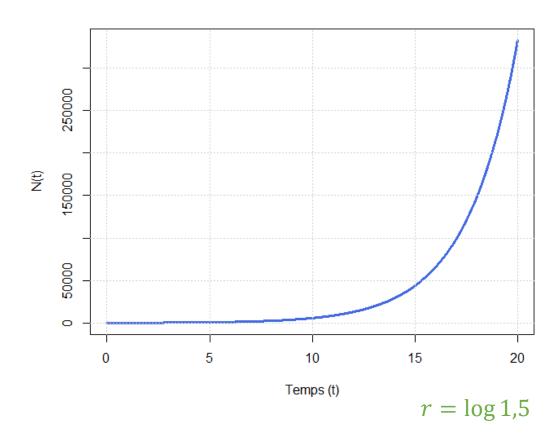
[exp. growth]

Exponential growth: $N(t) = e^{rt} \times N_0$

If r < 0, pop. Decreases exponentially



If r > 0, pop. Increases exponentially



Geometric vs exponential growth

Geom. growth:

 $N(t) = R^t \times N_0$

[discrete time]

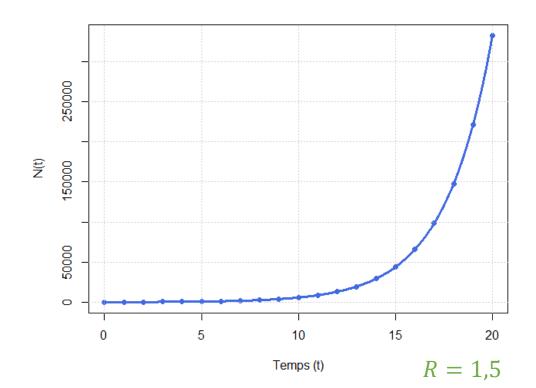
Exp. growth:

 $N(t) = e^{rt} \times N_0$

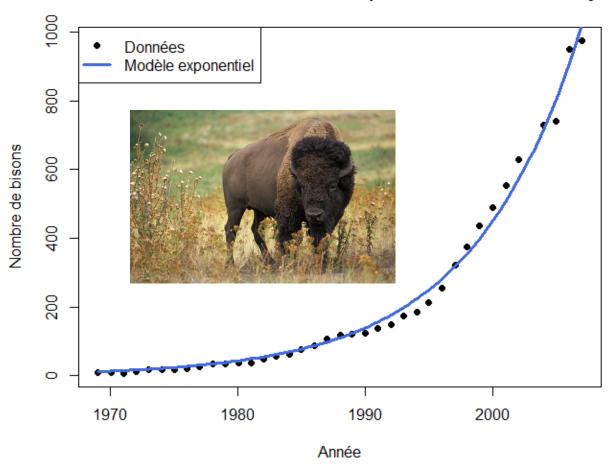
[continuous time]

Equivalence for: $R = e^r$

These are the same thing!

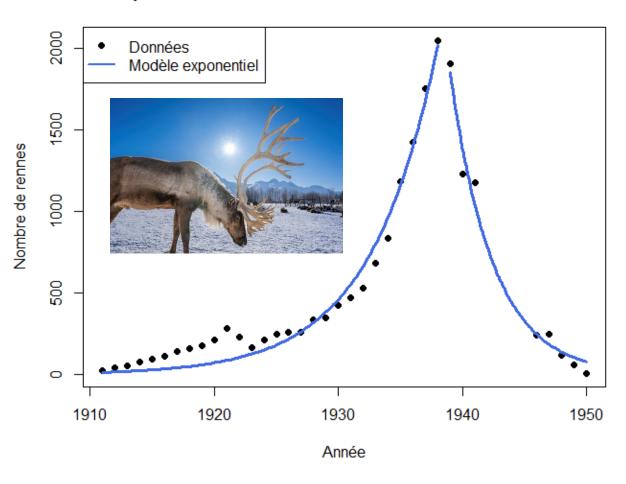


Croissance des bisons dans les plaines de Jackson Valley



Gates et al (2010) American bison: status survey and conservation guidelines 2010. IUCN.

Population de rennes sur l'île de Saint Paul en Alaska



Scheffer (1951) The rise and fall of a reindeer herd. *The Scientific Monthly*, 73(6), 356-362.

Limits to growth

Logistic growth – continuous time

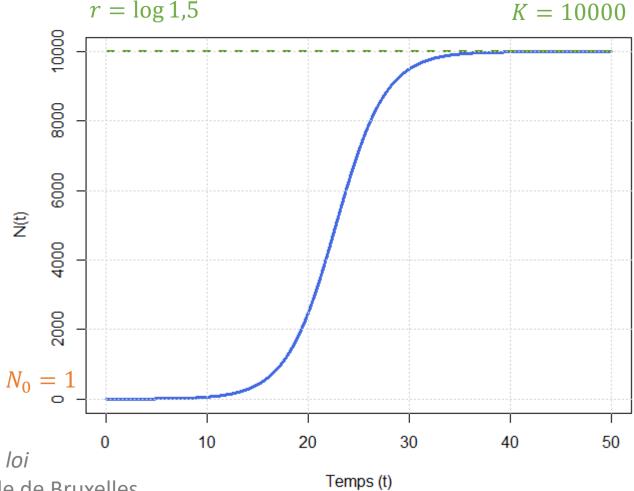
- Carrying capacity of the env.: *K*
- Differential eq.:

$$\frac{dN}{dt}(t) = rN(t)\left(1 - \frac{N(t)}{K}\right)$$

• Solution:

$$N(t) = \frac{KN_0}{N_0 + (K-1)e^{-rt}}$$

Model due to



Verhulst (1844) *Recherches mathématiques sur la loi d'accroissement de la population*. Académie Royale de Bruxelles.

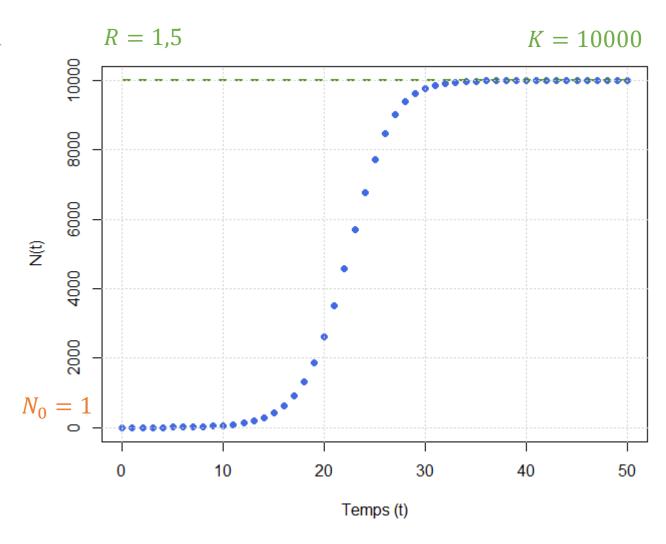
Logistic growth – discrete time

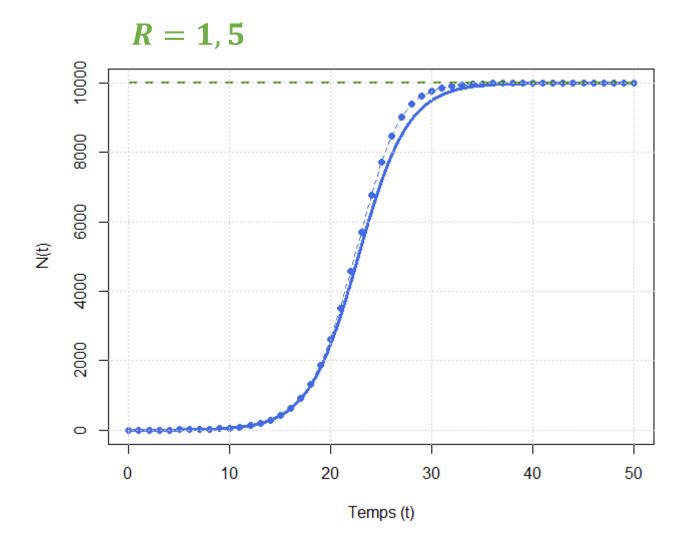
- Carrying capacity of the env.: K
- Recurrence eq.:

$$N(t+1) = R^{\left(1 - \frac{N(t)}{K}\right)} N(t)$$

- No explicit solution
- Model due to

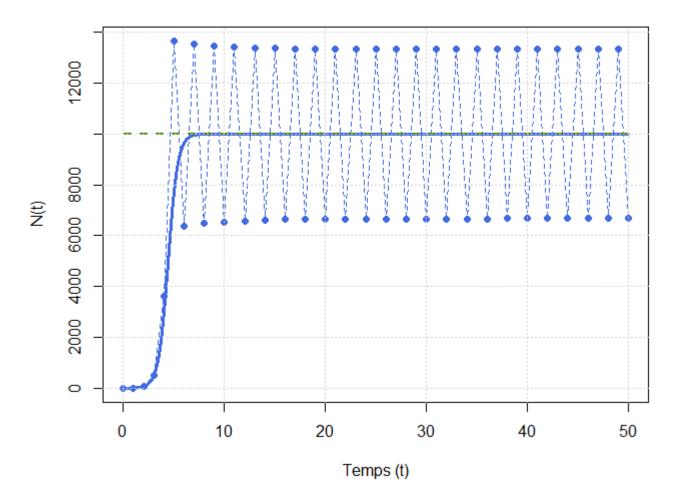
Ricker (1954), "Stock and recruitment", J. Fisheries Res. Board Can.





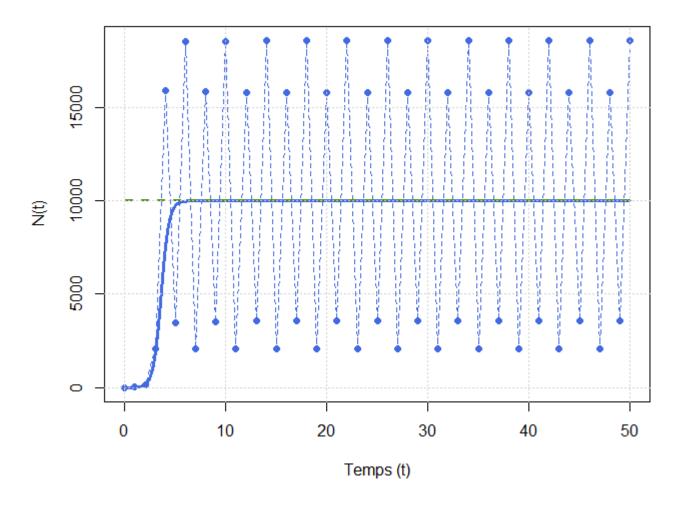
Ricker's model is **not** an exact discrete-time analogue of continuous-time logistic growth

$$R = 8$$



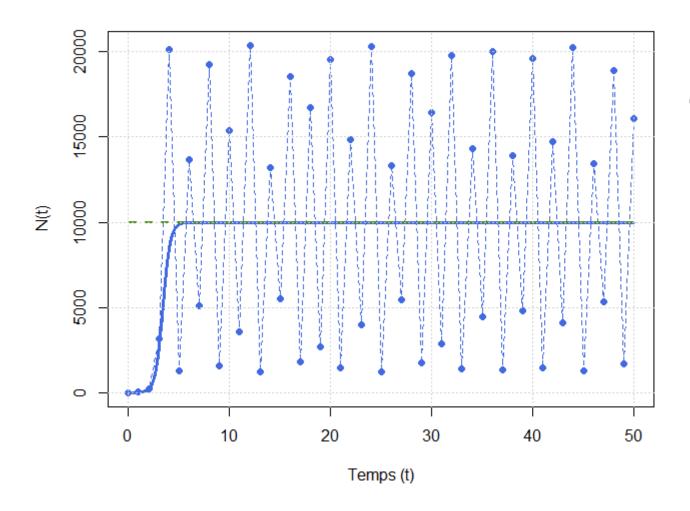
Ricker's model can generate periodic oscillations of period 2

$$R = 13$$



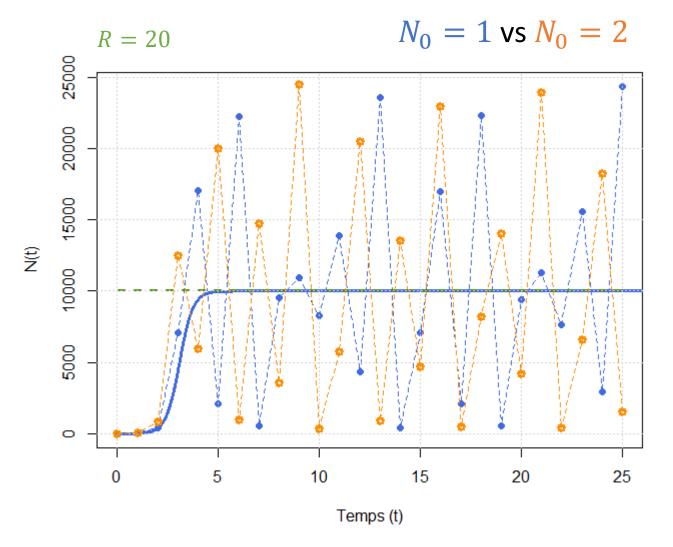
Ricker's model can generate periodic oscillations of period 4 and more generally 2^n

$$R=15$$



Ricker's model can produce chaotic oscillations (loss of periodicity)

Deterministic chaos



A small difference in initial conditions generates large differences of trajectories

-> it is therefore impossible in this case to predict the dynamics of the system

May (1976). Simple mathematical models with very complicated dynamics. *Nature*.

Alternate logistic model – discrete time

- Carrying capacity of the env.: K
- Recurrence eq.:

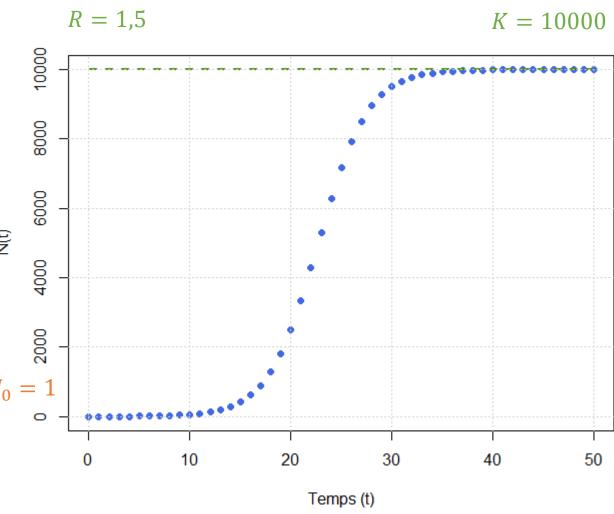
$$N(t+1) = \frac{RN(t)}{1 + \frac{N(t)}{K}(R-1)}$$

• Solution:

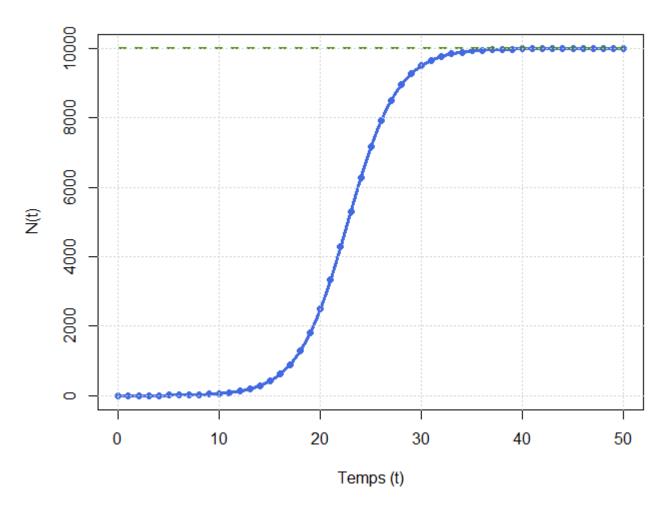
$$N(t) = \frac{KN_0}{N_0 + (K - N_0)R^{-t}}$$

• Model due to

Beverton & Holt (1957) On the Dynamics of Exploited Fish Populations, Fishery Investigations Series I



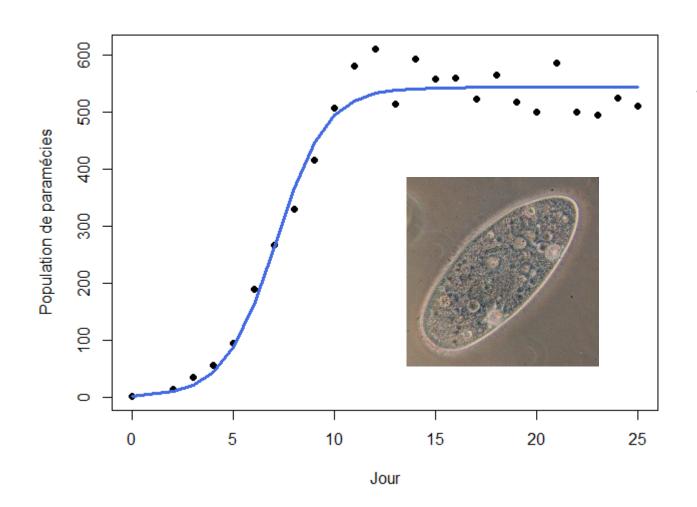
B-H vs logistic – discrete vs continuous time



Beverton-Holt's model is the exact discrete-time analogue of logistic growth in continuous time

-> No chaos!

Logistic growth: paramecia as an example



Data from Gause (1934)'s famous experiments leading to the competitive exclusion principle in ecology

Gause (1934) Experimental analysis of Vito Volterra's mathematical theory of the struggle for existence. *Science*

Is chaos possible in nature?

Behind the Paper

Chaos in ecology is more common than you think

We find evidence for chaos in over 30% of time series in an ecological database using updated, flexible, and rigorously tested algorithms. Lack of evidence for chaos in prior meta-analyses is likely the result of methodological and data limitations, rather than inherent stability.

Published in Ecology & Evolution
Jun 27, 2022

Tanya Rogers
Research Fish Biologist, NOAA Fisheries

≗+ Follow

chaotic non-chaotic **Dynamics:** Pine-tree lappet (9586) Scarlet tiger moth (9191) log Scaled Abundance 50 20 60 10 20 30 40 Northern red-backed vole (9919) Grey wolf or Timber wolf (9391) 10 40 30 Dinoflagellate (6127) Pennate diatom (5021) 2.5 0.0 -2.5 -5.0

150

100

50

40

20

30

10

Summary of the 1-body problem (1 species)

Population dynamics of an « isolated » species can be described:

- In continuous-time, in which case it will converge to an equilibrium
 - -> The dynamics of the system can be predicted
- In discrete-time, in which case it can
 - Converge to an equilibrium
 - Fluctuate periodically
 - Fluctuate chaotically
 - -> The dynamics of the system can be unpredictable!

2. Two-body problem (two species)

Prey-predator model – continuous-time

- Prey density: N(t)
- Predator density: P(t)
- Prey reproductive rate: *r*
- Prey mortality rate due to predation: aP(t)
- Predator reproduction rate: bN(t)
- Predator mortality rate: *m*

System of differential eq.:

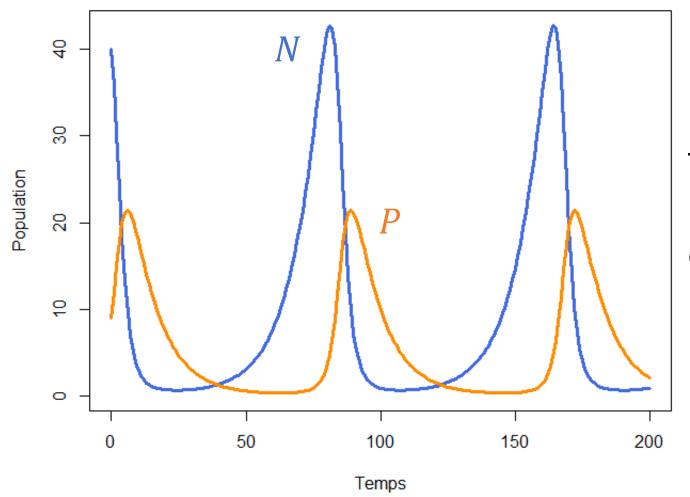
$$\begin{cases} \frac{dN}{dt}(t) = rN(t) - aP(t)N(t) \\ \frac{dP}{dt}(t) = bP(t)N(t) - mP(t) \end{cases}$$

- No explicit solution
- Model due to

Lotka (1925) Elements of Physical Biology.

Volterra (1926) Variazioni e fluttuazioni del numero d'individui in specie animali conviventi.

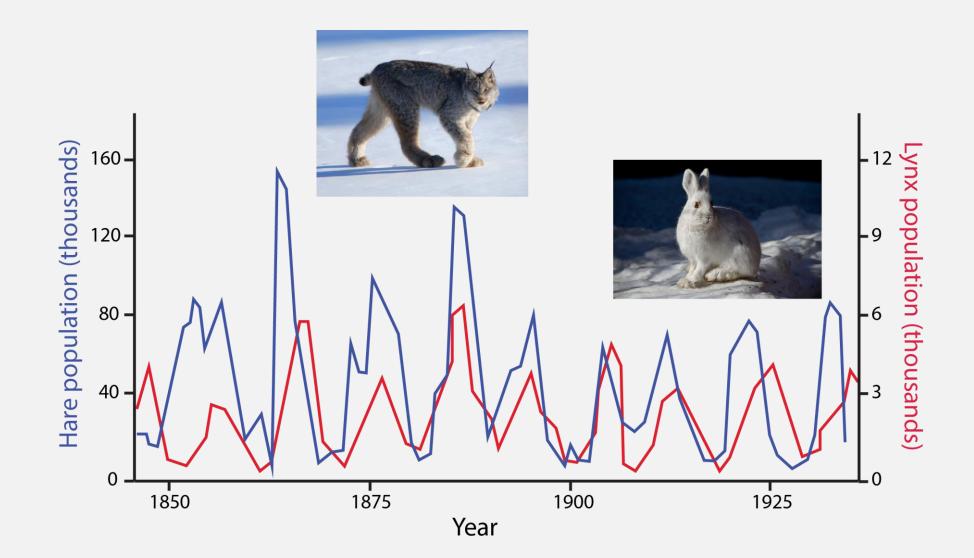
Prey-predator dynamics



Prey-predator interactions lead to periodic oscillations

The predator population regulates the prey pop., and conversely

Lynx and hare example in Canada



Host-parasitoid model – discrete-time

- Host density: N(t)
- Parasitoid density: P(t)
- Host reproductive number: *R*
- Host mortality due to parasitism: aP(t)
- Parasitoid number from infected host: b

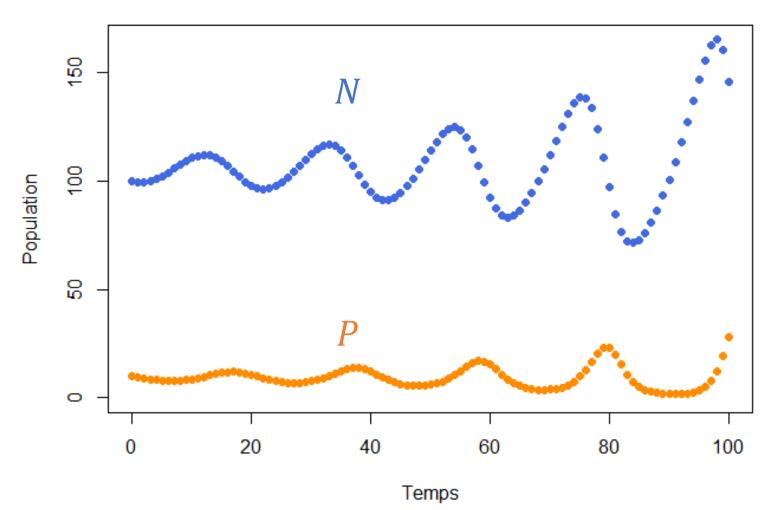
• Recurrence eq. system:

$$\begin{cases} N(t+1) = RN(t)e^{-aP(t)} \\ P(t+1) = bN(t)(1 - e^{-aP(t)}) \end{cases}$$

- No explicit solution
- Model due to

Nicholson & Bailey (1935) The Balance of Animal Populations. Part I. Proceedings of the Zoological Society of London

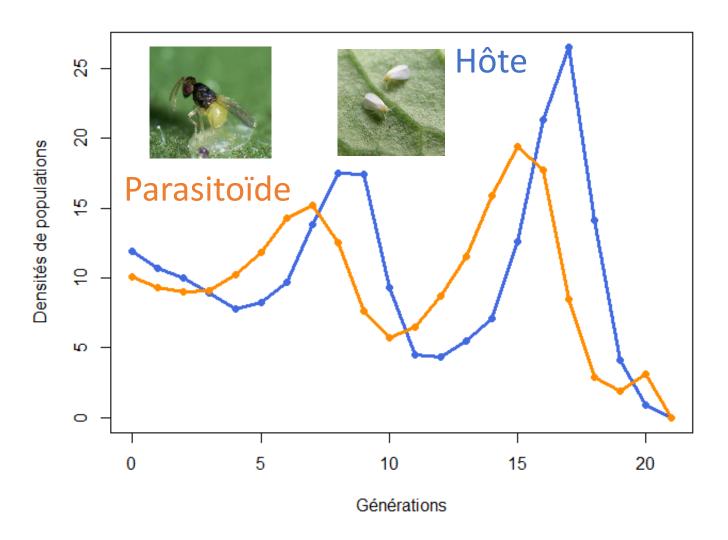
Host-parasitoid dynamics



Host-parasitoid interactions generate oscillations of ever-increasing magnitude

Nicholson-Bailey's model is not biologically well posed in the long run

Burnett (1958)'s experience

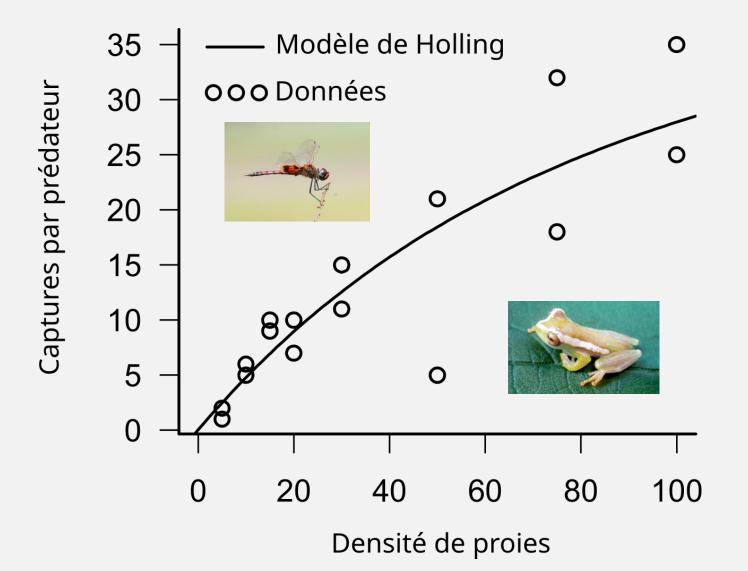


Experimental data with the whitefly *Trialeurodes* vaporariorum and its parasitoid *Encarsia formosa*.

The dynamics qualitatively correspond to those of the Nicholson-Bailey's model

Burnett, (1958) A model of host-parasite interaction. In Proceedings of the 10th International Congress of Entomology

Holling's functional response



The number of prey caught per predator tends to saturate with increasing prey density

Functional response:

$$f(N) = \frac{aN}{1 + ahN}$$

Holling (1965) The functional response of predators to prey density. Entomological Society of Canada

Bolker (2008) Ecological models and data in R

Prey-predator model – continuous-time (2)

- Logistic growth of the prey
- Predator « saturation » prey number per predator per unit time:

$$f(N) = \frac{aN}{1 + ahN}$$

- Predator attack rate: a
- Prey handling rate by predator: h
- Prey to predator conversion coefficient: e

• Differential eq. system:

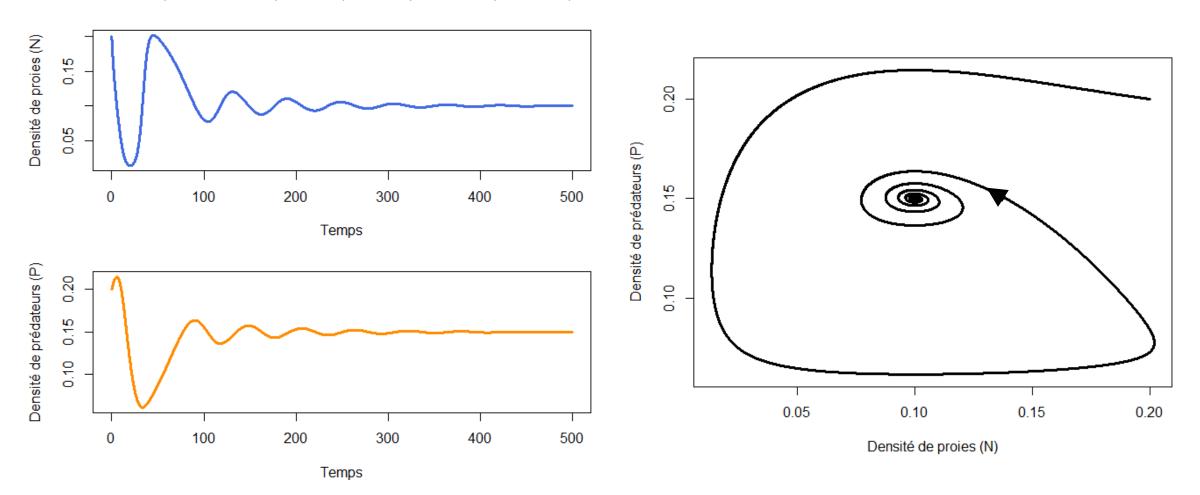
$$\begin{cases} \frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) - \frac{aPN}{1 + ahN} \\ \frac{dP}{dt} = e\frac{aPN}{1 + ahN} - mP \end{cases}$$

- No explicit solution
- Model due to

Rosenzweig & MacArthur (1963) Graphical representation and stability conditions of predator-prey interactions. The American Naturalist

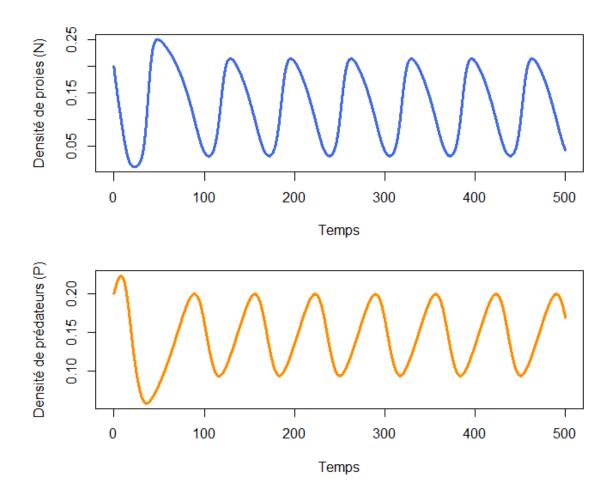
Dumped oscillations – converging spiral

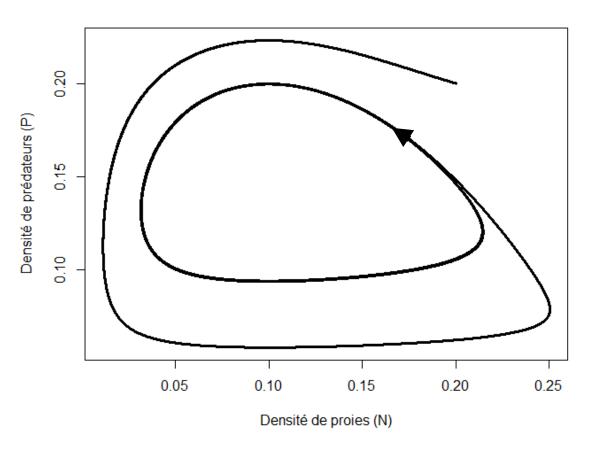
r = 0.5, K = 0.25, a = 5, h = 3, e = 0.5, m = 0.1



Sustained oscillations – limit cycle

r = 0.5, K = 0.30, a = 5, h = 3, e = 0.5, m = 0.1





Host-parasitoid model – discrete time

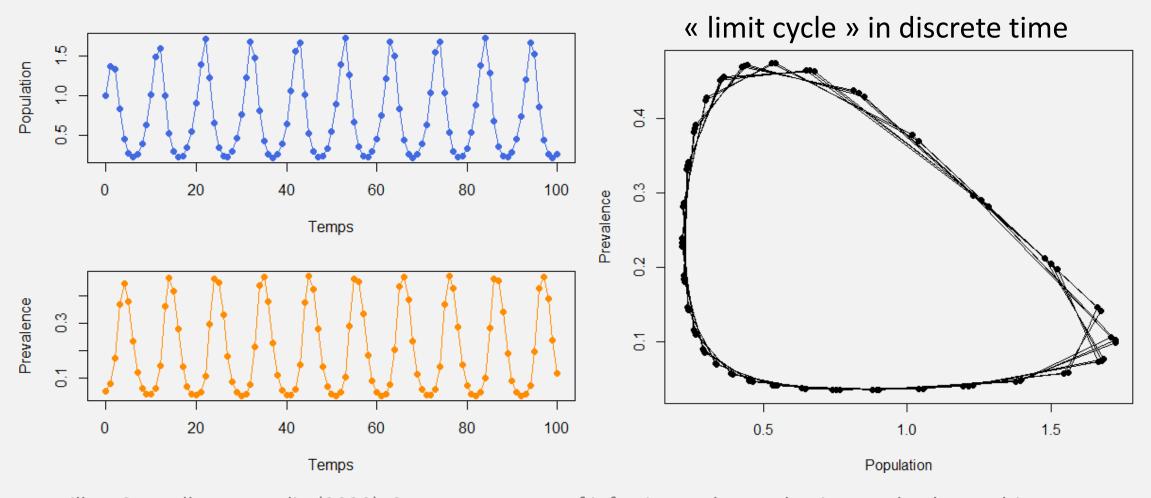
- Susceptible and infected host densities: S(t) et I(t)
- Susceptible and infected host reproduction: b_S et b_I
- Force of infection: aI(t)
- Probability of parasite vertical transmission: p
- Recurrence eq. system:

$$\begin{cases} S(t+1) = b_S S(t) e^{-aI(t)} + (1-p) b_I \Big(I(t) + S(t) \Big(1 - e^{-aI(t)} \Big) \Big) \\ I(t+1) = p b_I \Big(I(t) + S(t) \Big(1 - e^{-aI(t)} \Big) \Big) \end{cases}$$

Model due to

Hilker, Sun, Allen, Hamelin (2020). Separate seasons of infection and reproduction can lead to multi-year population cycles. *Journal of theoretical biology*.

Host parasitoid model – discrete time

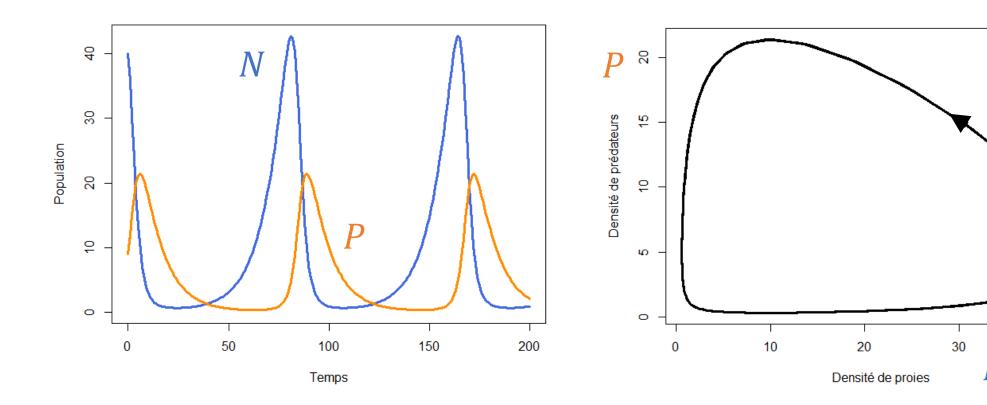


Hilker, Sun, Allen, Hamelin (2020). Separate seasons of infection and reproduction can lead to multi-year population cycles. *Journal of theoretical biology*.

Summary of the 2-body problem (2 species)

Periodic oscillations can occur in continuous-time

(We already knew it was possible in discrete-time for 1 species)



40

3. The three-body problem (three species)

3-species competition

- Species densities: N_1 , N_2 , N_3
- Intrinsic growth rate: r
- Carrying capacity: K
- Competition coefficients: α , β
- Rock-paper-scissor type competition:

$$egin{bmatrix} 1 & lpha & eta \ eta & 1 & lpha \ lpha & eta & 1 \end{bmatrix}$$

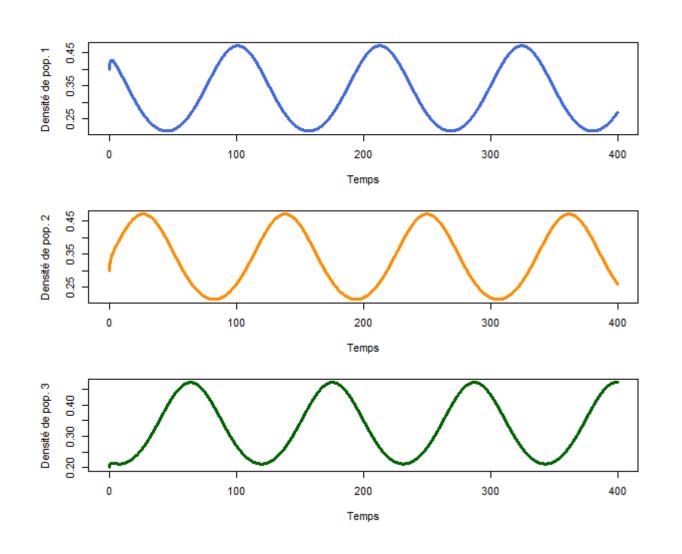
• Differential eq. system:

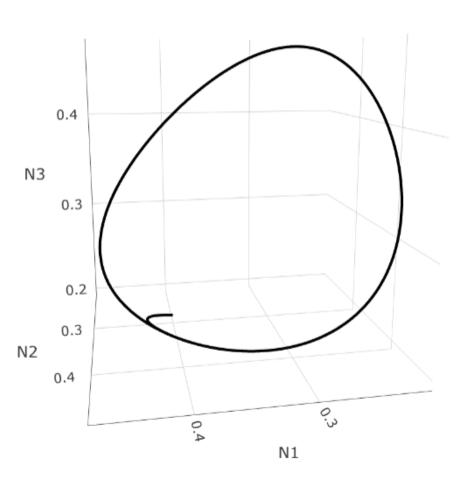
$$\begin{cases} \frac{dN_{1}}{dt} = rN_{1} \left(1 - \frac{N_{1} + \alpha N_{2} + \beta N_{3}}{K} \right) \\ \frac{dN_{2}}{dt} = rN_{2} \left(1 - \frac{\beta N_{1} + N_{2} + \alpha N_{3}}{K} \right) \\ \frac{dN_{3}}{dt} = rN_{3} \left(1 - \frac{\alpha N_{1} + \beta N_{2} + N_{3}}{K} \right) \end{cases}$$

Model due to

May & Leonard (1975). Nonlinear aspects of competition between three species. *SIAM journal on applied mathematics*

Rock-paper-scissor type dynamics





3-species trophic chain

- Prey density: N
- Predator density: P
- Super-predator density: S
- Prey reproductive rate: *r*
- Prey carrying capacity: K
- Predation: $\frac{a_1RC}{1+b_1R}$
- Super-predation: $\frac{a_2CP}{1+b_2C}$
- Mortality of P, S: d_1 , d_2

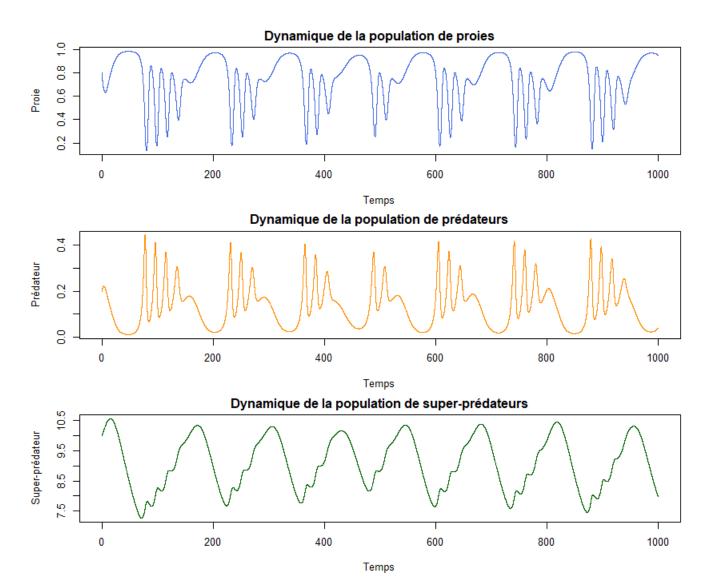
• Differential eq. system:

$$\begin{cases} \frac{dN}{dt} = rR\left(1 - \frac{R}{K}\right) - \frac{a_1NP}{1 + b_1N} \\ \frac{dP}{dt} = c_1 \frac{a_1NP}{1 + b_1N} - \frac{a_2PS}{1 + b_2P} - d_1P \\ \frac{dS}{dt} = c_2 \frac{a_2PS}{1 + b_2P} - d_2S \end{cases}$$

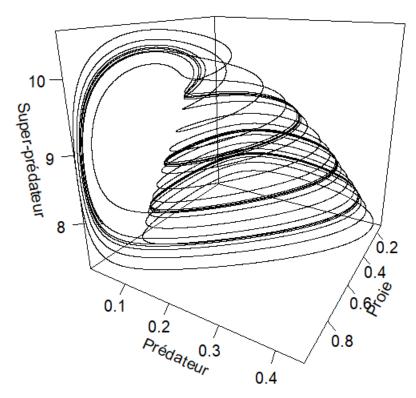
Model due to

Hastings & Powell (1991) Chaos in a three-species food chain. *Ecology*.

Prey-predator-superpredator dynamics



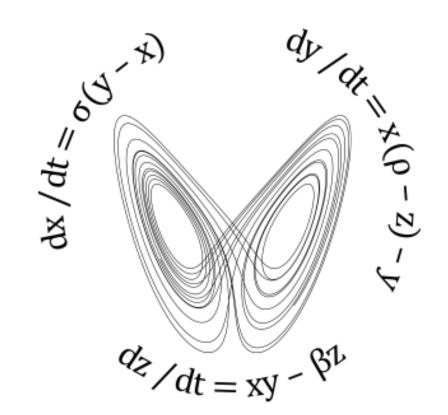
Attracteur chaotique de Hastings-Powell



Summary of the 3-body problem (3 species)

Chaotic fluctuations can occur in continuous-time

(We knew that was possible in discrete-time already for 1 species)

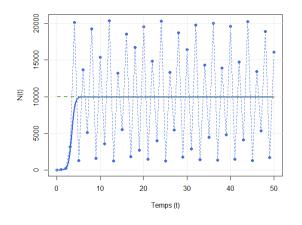


Strange attractor

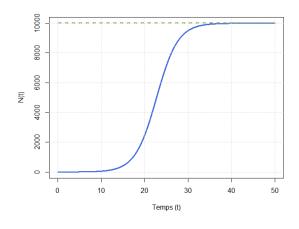
Butterfly effect: great sensitivity to initial conditions

Ecological dynamics impossible to predict

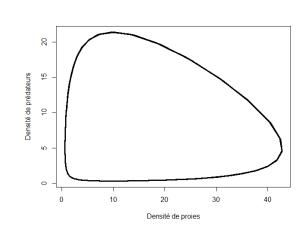
Summary



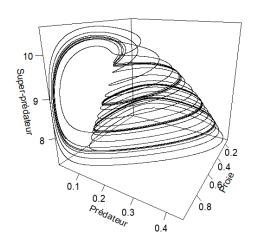
- In discrete-time (non-overlapping generations), dynamics can be unpredictable (chaotic) from dimension 1
- In continuous-time (overlapping generations), dynamics can be unpredictable (chaotic) from dimension 3



1D



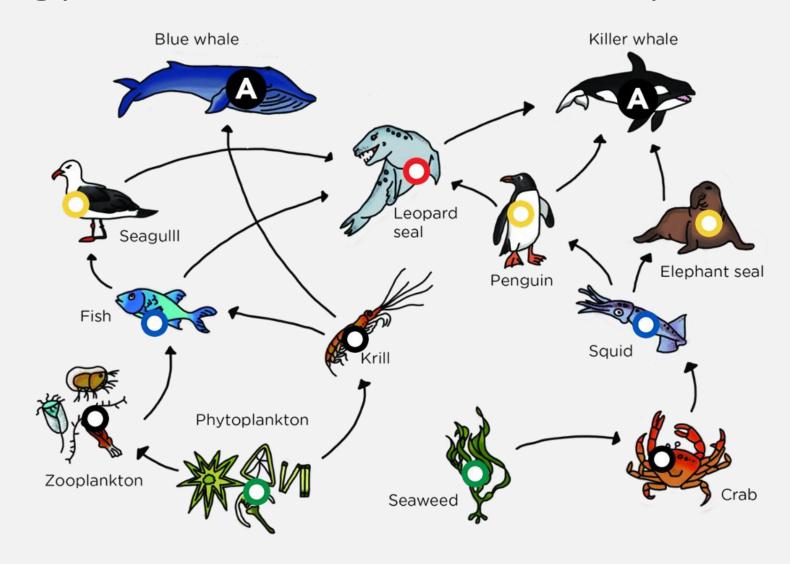
2D



Attracteur chaotique de Hastings-Powell

3D

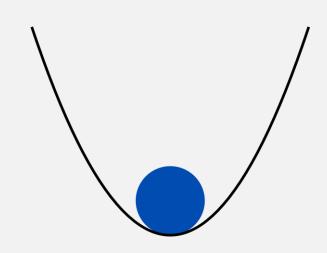
In ecology, dimension 3 is relatively low

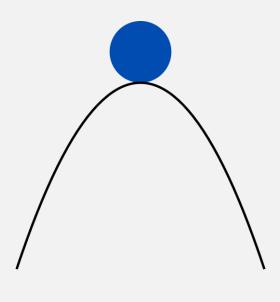


Notions of equilibrium and stability

Equilibrium

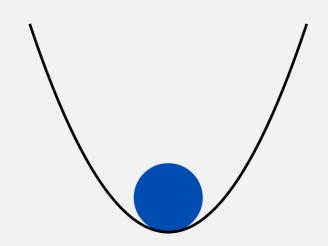
If starting from that state the dynamics stay in that state

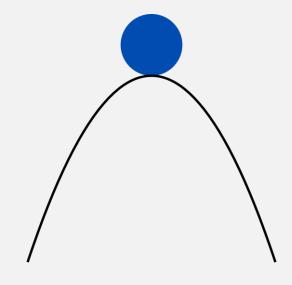




Stability

Stability of an equilibrium: the fact that the dynamics get back to equilibrium after a small perturbation





Unstability of an equilibrium: the fact that the dynamics goes away from that equilibrium after a small pertubation

1. Dimension 1

Equilibrium – dimension 1 – continuous time

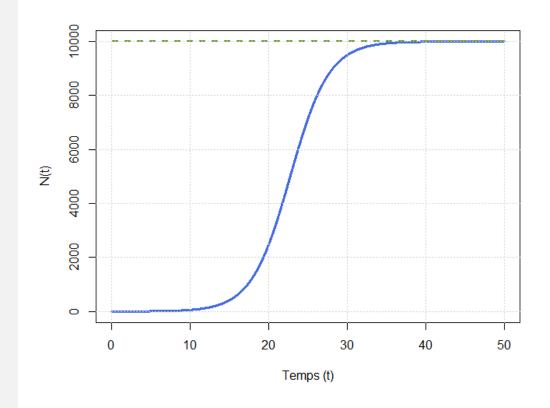
General form of pop. dyn.:

$$\frac{dN}{dt} = f(N)$$

• Equilibrium: any pop. size \overline{N} for which pop. size does not vary:

$$\frac{dN}{dt} = f(\overline{N}) = 0$$

• In words: if pop. has size \overline{N} , it remains of size \overline{N}

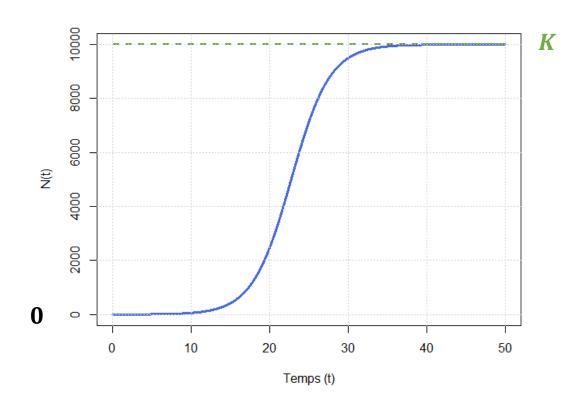


Equilibrim – dimension 1 – continuous time

Ex.: logistic model

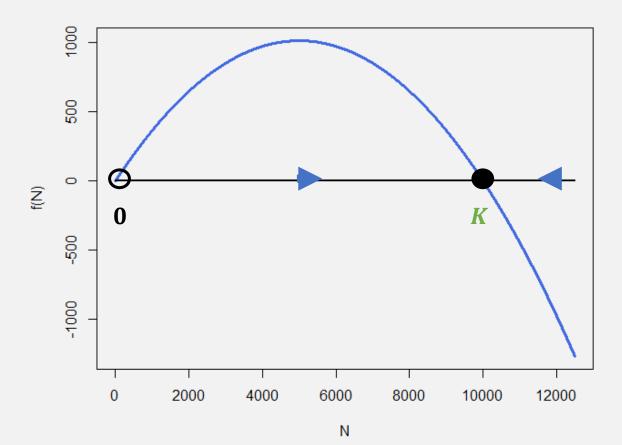
$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

- Two equilibria:
 - Species absent: $\overline{N} = 0$
 - Sp. at carrying capacity: $\overline{N} = K$
- Remark: N = 0 is always an équilibrium in Biology (no spontaneous generation)



Stability of equilibria – 1D – continuous time

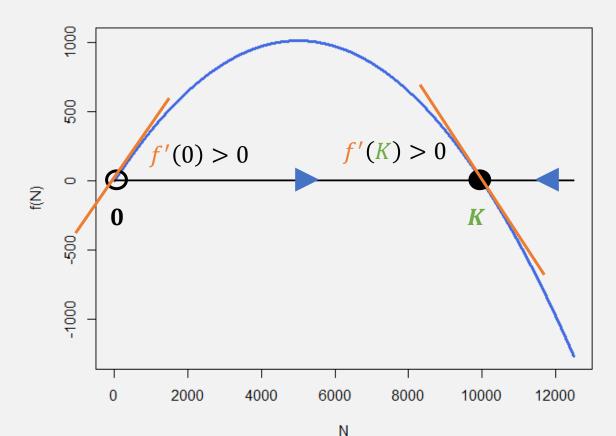
• Logistic model example: $\frac{dN}{dt} = f(N) = rN\left(1 - \frac{N}{K}\right)$



- Equilibrium $\overline{N} = 0$ is stable : if the species is introduced it does not go extinct
- Equilibrium $\overline{N} = K$ is stable : if pop. size deviates from K it gets back to K

Stability of equilibria – 1D – continuous time

• Logistic model example: $\frac{dN}{dt} = f(N) = rN\left(1 - \frac{N}{K}\right)$



Mathematically, the stability of equilibrium \overline{N} is given by differentiating f(N) around \overline{N} :

- $f'(\overline{N}) > 0$: unstable eq.
- $f'(\overline{N}) < 0$: stable eq.

Equilibrium – dimension 1 – discrete time

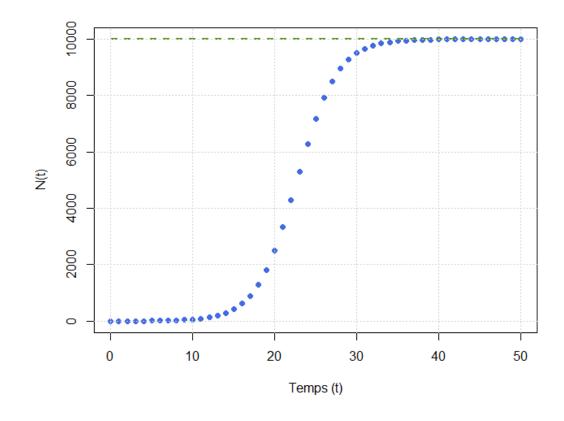
General form of pop. dyn.:

$$N(t+1) = F(N(t))$$

• Equilibrium: any pop. size \overline{N} for which pop. size does not vary:

$$\overline{N} = F(\overline{N})$$

• In words: if pop. has size \overline{N} , it remains of size \overline{N}



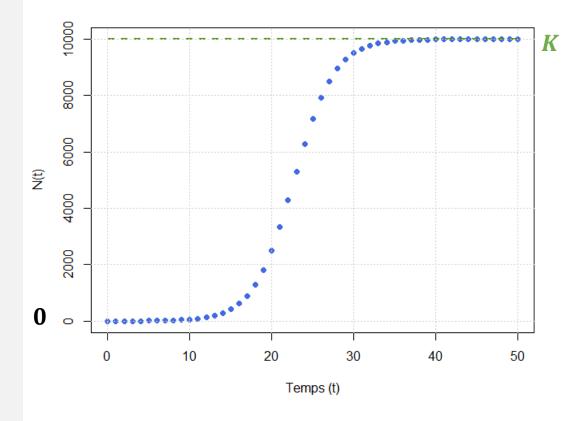
Equilibrium – dimension 1 – discrete time

• Ex.: Beverton-Holt model

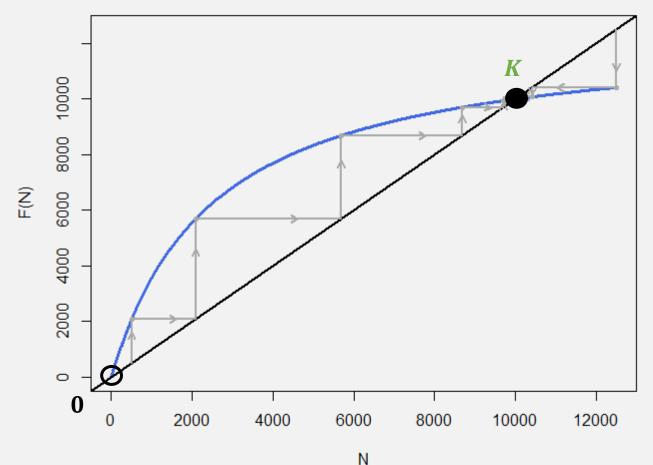
$$N(t+1) = \frac{RN(t)}{1 + \frac{N(t)}{K}(R-1)}$$

• 2 equilibria:

- Species absent: $\overline{N} = 0$
- Sp. at carrying capacity: $\overline{N} = K$
- Remark: N = 0 is always an équilibrium in Biology (no spontaneous generation)

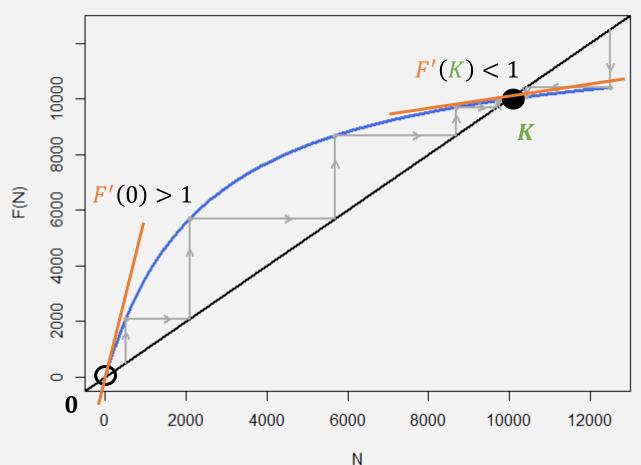


• Beverton-Holt model example: $N(t+1) = F(N) = \frac{RN(t)}{1 + \frac{N(t)}{K}(R-1)}$



- Equilibrium $\overline{N} = 0$ is unstable: if the species is introduced it does no go extinct
- Equilibrium $\overline{N} = K$ is stable: if pop. size deviates from K it gets back to K

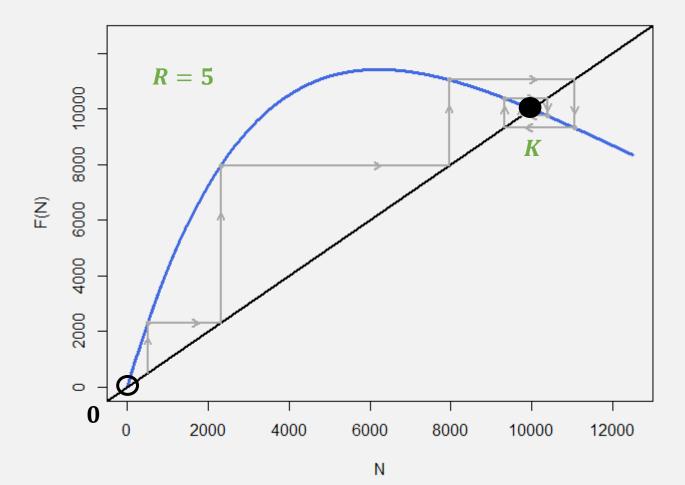
• Beverton-Holt model example: $N(t+1) = F(N) = \frac{RN(t)}{1 + \frac{N(t)}{K}(R-1)}$



Mathematically, the stability of equilibrium \overline{N} is given by differentiating F(N) around \overline{N} :

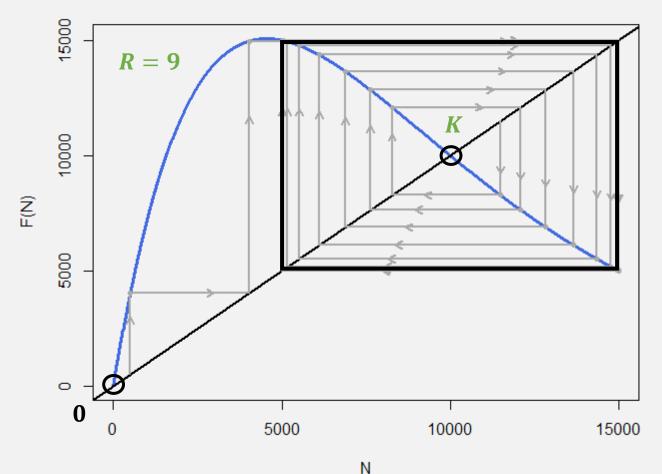
- $|F'(\overline{N})| > 1$: unstable eq.
- $|F'(\overline{N})| < 1$: stable eq.

• Ricker model example: $N(t+1) = F(N) = R^{\left(1 - \frac{N(t)}{K}\right)}N(t)$



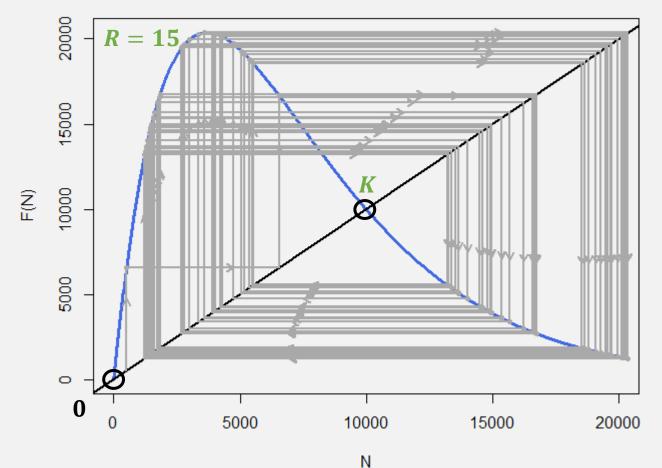
- Equilibrium $\overline{N} = 0$ is unstable: if the species is introduced it does not go extinct
- Equilibrium $\overline{N} = K$ is stable: if pop. size deviates from K it gets back to K

• Ricker model example: $N(t+1) = F(N) = R^{\left(1 - \frac{N(t)}{K}\right)}N(t)$



- Equilibrium $\overline{N} = 0$ is unstable: if the species is introduced it does not go extinct
- Equilibrium $\overline{N} = K$ is **un**stable: if pop. size. deviates from K it goes away from K
- Stable limit cycle (periodic oscillations)

• Ricker model example: $N(t+1) = F(N) = R^{\left(1 - \frac{N(t)}{K}\right)}N(t)$



- Equilibrium $\overline{N} = 0$ is unstable: if the species is introduced it does not go extinct
- Equilibrium $\overline{N} = K$ is **un**stable: if pop. size. deviates from K it goes away from K
- Chaotic fluctuations

2. Dimension 2

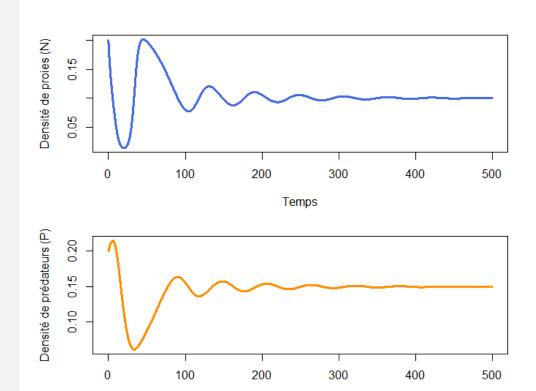
Equilibrium – dimension 2 – continuous time

General form of the pop. dyn.:

$$\begin{cases} \frac{dN_1}{dt} = f(N_1, N_2) \\ \frac{dN_2}{dt} = g(N_1, N_2) \end{cases}$$

• Equilibrium: any pair $(\overline{N}_1, \overline{N}_2)$ s.t.:

$$\begin{cases} 0 = f(\overline{N}_1, \overline{N}_2) \\ 0 = g(\overline{N}_1, \overline{N}_2) \end{cases}$$



Temps

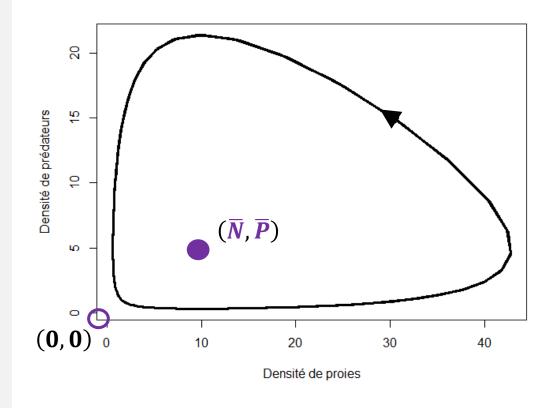
Equilibrium – dimension 2 – continuous time

• Ex.: Prey-predator model

$$\begin{cases} \frac{dN}{dt}(t) = rN(t) - aP(t)N(t) \\ \frac{dP}{dt}(t) = bP(t)N(t) - mP(t) \end{cases}$$

- Equilibria:
 - Both species absent: $(\overline{N}, \overline{P}) = (0,0)$
 - Both species present:

$$(\overline{N}, \overline{P}) = \left(\frac{m}{b}, \frac{r}{a}\right)$$



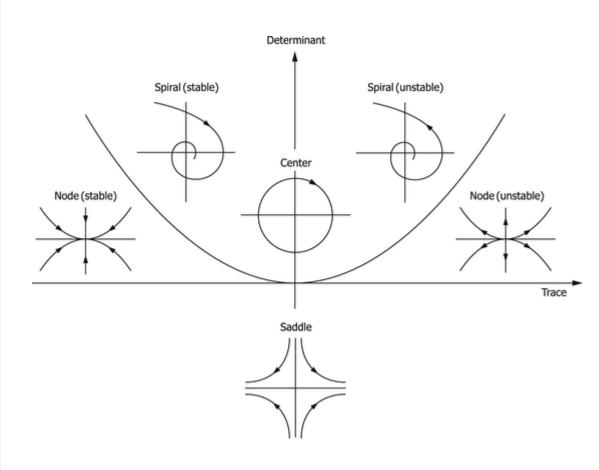
Stability – dimension 2 – continuous time

General form of the dynamics:

$$\begin{cases} \frac{dN_1}{dt} = f(N_1, N_2) \\ \frac{dN_2}{dt} = g(N_1, N_2) \end{cases}$$

• Jacobian matrix:

$$J = \begin{bmatrix} \frac{\partial f}{\partial N_1} & \frac{\partial f}{\partial N_2} \\ \frac{\partial g}{\partial N_1} & \frac{\partial g}{\partial N_2} \end{bmatrix}$$



Stability – dimension 2 – continuous time

• Ex.: prey-predator model

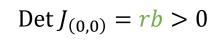
$$\begin{cases} f(N,P) = rN(t) - aP(t)N(t) \\ g(N,P) = bP(t)N(t) - mP(t) \end{cases}$$

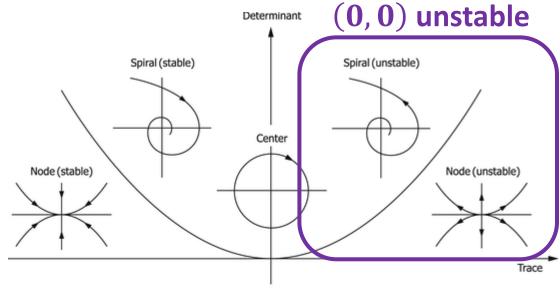
Jacobian matrix:

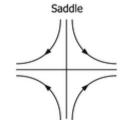
Jacobian matrix:
$$J = \begin{bmatrix} \frac{\partial f}{\partial N} & \frac{\partial f}{\partial P} \\ \frac{\partial g}{\partial N} & \frac{\partial g}{\partial P} \end{bmatrix} = \begin{bmatrix} r - aP & -aN \\ bP & b - mP \end{bmatrix}$$

• Evaluated around $(\overline{N}, \overline{P}) = (0,0)$:

$$J_{(0,0)} = \begin{bmatrix} r & 0 \\ 0 & b \end{bmatrix}$$







$$\operatorname{Tr} J_{(0,0)} = r + b > 0$$

Stability – dimension 2 – continuous time

• Ex.: Prey-predator example

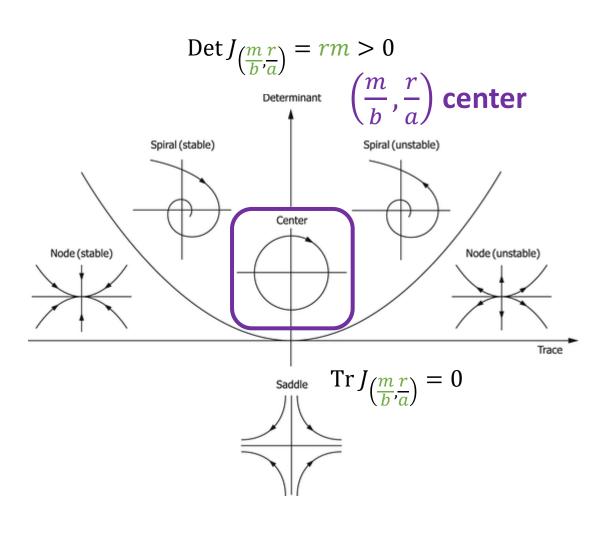
$$\begin{cases} f(N,P) = rN(t) - aP(t)N(t) \\ g(N,P) = bP(t)N(t) - mP(t) \end{cases}$$

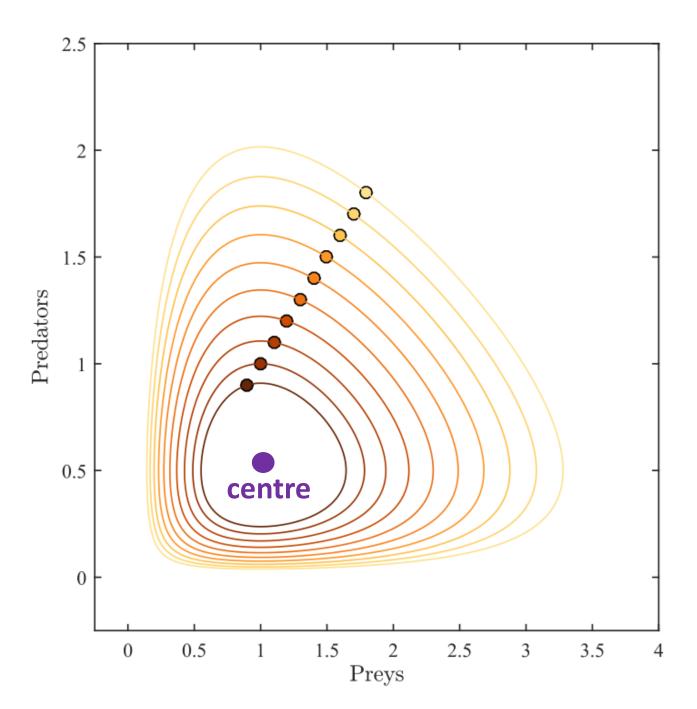
Jacobian matrix:

$$J = \begin{bmatrix} \frac{\partial f}{\partial N} & \frac{\partial f}{\partial P} \\ \frac{\partial g}{\partial N} & \frac{\partial g}{\partial P} \end{bmatrix} = \begin{bmatrix} r - aP & -aN \\ bP & bN - m \end{bmatrix}$$

• Evaluated around $(\overline{N}, \overline{P}) = (\frac{m}{h}, \frac{r}{a})$:

$$J_{\left(\frac{m}{b},\frac{r}{a}\right)} = \begin{bmatrix} 0 & -a\frac{m}{b} \\ b\frac{r}{a} & 0 \end{bmatrix}$$





The Lotka-Volterra predatorprey model generates an infinite number of possible cycles, as a function of initial conditions

This behavior is not robust to slight model variations. For instance, if the prey grows logistically in the absence of predator, the dynamics spiral towards a stable equilibrium

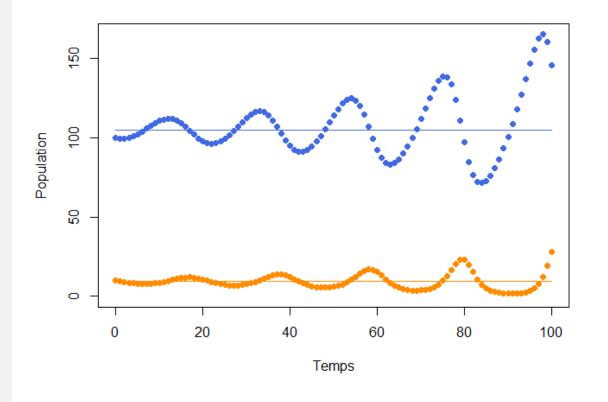
Equilibrium – dimension 2 – discrete time

General form of the dynamics:

$$\begin{cases} N_1(t+1) = F(N_1, N_2) \\ N_2(t+1) = G(N_1, N_2) \end{cases}$$

• Equilibrium: any pair $(\overline{N}_1, \overline{N}_2)$ s.t.:

$$\begin{cases} \overline{N}_1 = F(\overline{N}_1, \overline{N}_2) \\ \overline{N}_2 = G(\overline{N}_1, \overline{N}_2) \end{cases}$$



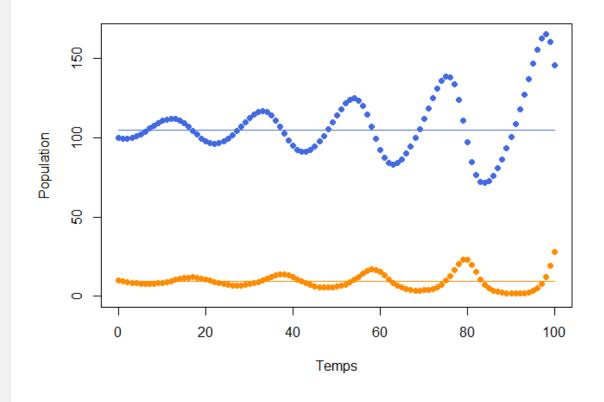
Equilibrium – dimension 2 – discrete time

• Ex.: Nicholson-Bailey model

$$\begin{cases} N(t+1) = RNe^{-aP} \\ P(t+1) = bN (1 - e^{-aP}) \end{cases}$$

- Equilibria:
 - Both species absent: $(\overline{N}, \overline{P}) = (0,0)$
 - Both species present:

$$(\overline{N}, \overline{P}) = \left(\frac{R}{R-1} \frac{\ln R}{ab}, \frac{\ln R}{a}\right)$$



Stability – dimension 2 – discrete time

General form of the dynamics:

$$\begin{cases} F(N_1, N_2) = f(N_1, N_2) \\ G(N_1, N_2) = g(N_1, N_2) \end{cases}$$

Jacobian matrix:

$$J = \begin{bmatrix} \frac{\partial f}{\partial N_1} & \frac{\partial f}{\partial N_2} \\ \frac{\partial g}{\partial N_1} & \frac{\partial g}{\partial N_2} \end{bmatrix}$$

• Let

$$A = 1 - \text{Det } J$$

$$B = \text{Det } J - \text{Tr } J + 1$$

$$C = \text{Det } J + \text{Tr } J + 1$$

 The stability of an equilibrium is given by the following necessary and sufficient conditions:

Stability – dimension 2 – discrete time

• Ex.: Nicholson-Bailey model

$$\begin{cases} F(N,P) = RNe^{-aP} \\ G(N,P) = bN (1 - e^{-aP}) \end{cases}$$

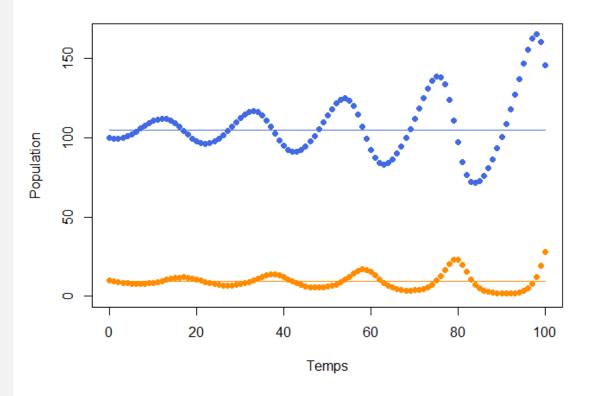
Jacobian matrix:

$$J = \begin{bmatrix} \frac{\partial f}{\partial N} & \frac{\partial f}{\partial P} \\ \frac{\partial g}{\partial N} & \frac{\partial g}{\partial P} \end{bmatrix} = \begin{bmatrix} Re^{-aP} & -aRNe^{-aP} \\ b(1 - e^{-aP}) & -abNe^{-aP} \end{bmatrix}$$

• Evaluated around $(\overline{N}, \overline{P}) = (0,0)$:

$$J_{(0,0)} = \begin{bmatrix} R & 0 \\ 0 & 0 \end{bmatrix}$$

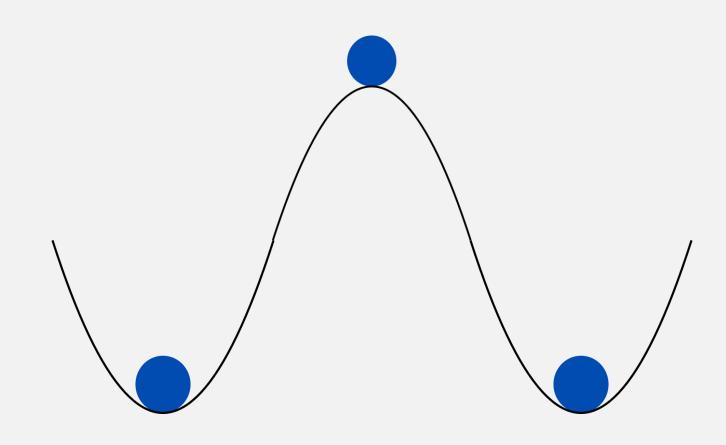
• Since B = Det J - Tr J = 1 - R < 0, the (0,0) equilibrium is unstable (since R > 1)



End of the mathematically simple examples

Notion of bi-stability

Bi-stability: which equilibrium the dynamics converge to depends on the initial condition

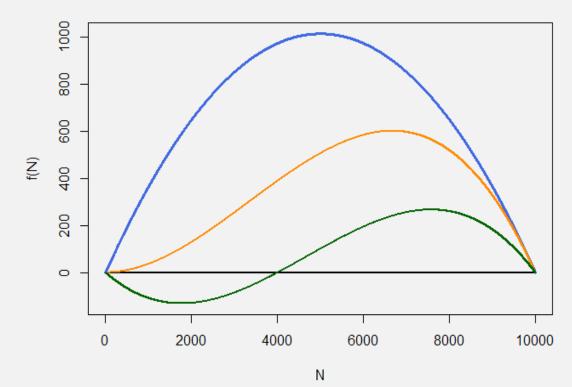


Allee effect

- Lower growth rate at low pop. density
- Ex.: logistic model with Allee effect :

$$\frac{dN}{dt} = f(N) = rN\left(1 - \frac{N}{K}\right)\left(\frac{N - A}{K}\right)$$

- A = 0: weak Allee effect
- A > 0: strong Allee effect (threshold)

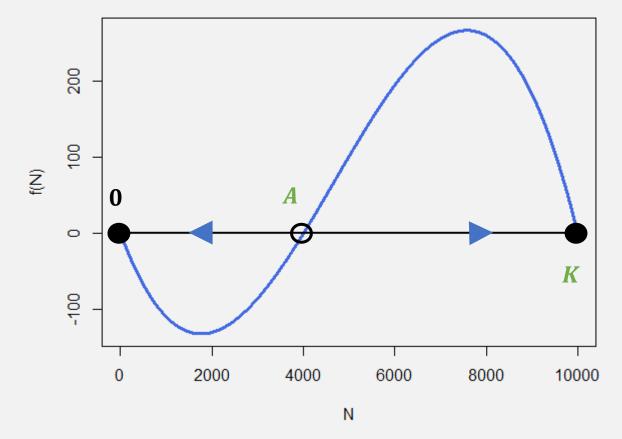


Strong Allee effect

• Ex.: logistic model with Allee effect:

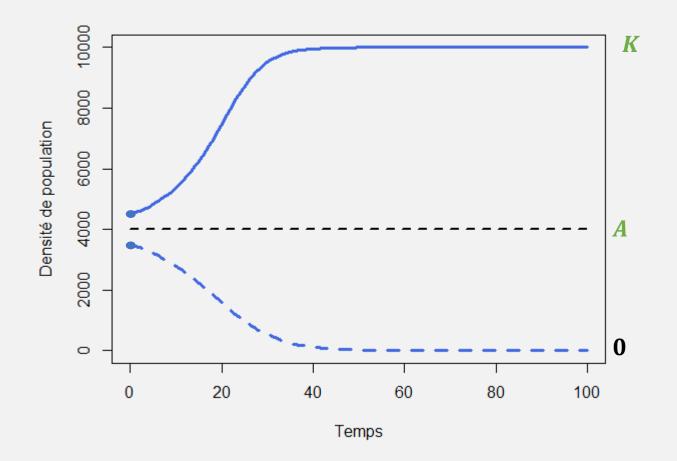
$$\frac{dN}{dt} = f(N) = rN\left(1 - \frac{N}{K}\right)\left(\frac{N - A}{K}\right)$$

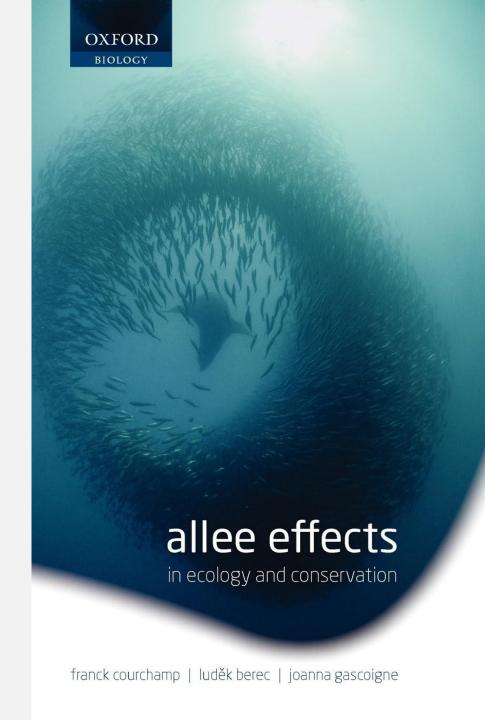
- 3 equilibria:
 - Species absent: $\overline{N} = 0$ (stable)
 - Allee threshold: $\overline{N} = A$ (unstable)
 - Carrying capacity: $\overline{N} = K$ (stable)
- **Bi-stability**: which equilibrium the dynamics converge to depends on initial conditions



Bi-stability

 Which equilibrium the dynamics converge to depends on initial conditions





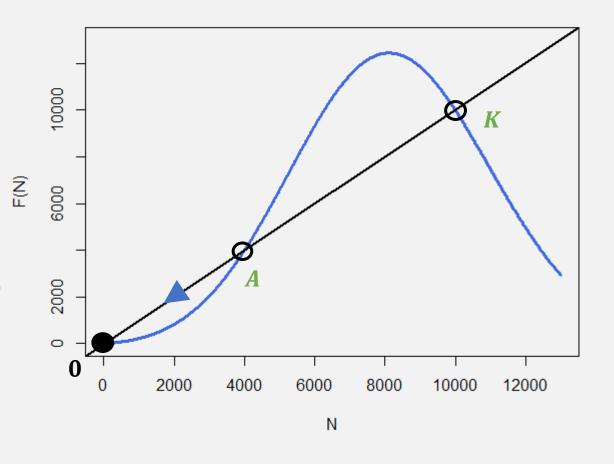
Notion of transient dynamics

Ricker model with Allee effect

• Example:

$$N(t+1) = R^{rN\left(1-\frac{N}{K}\right)\left(\frac{N-A}{K}\right)}N(t)$$

- 3 équilibria:
 - Species absent: $\overline{N} = 0$ (stable)
 - Allee threshold: $\overline{N} = A$ (unstable)
 - Carrying capacity: $\overline{N} = K$ (unstable)
- Extinction ($\overline{N} = 0$) is globally asymptotically stable (for this parameter set)

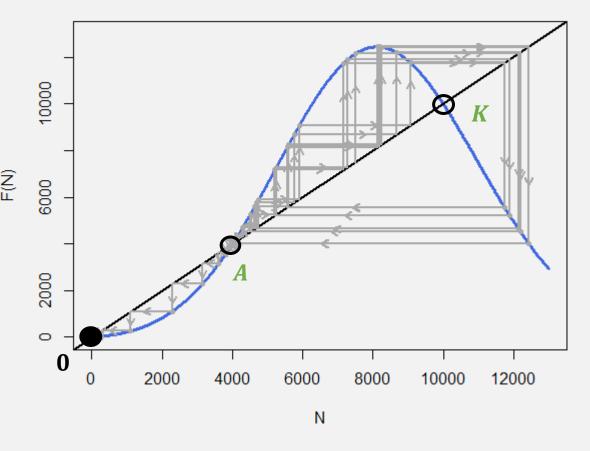


Ricker model with Allee effect

• Example:

$$N(t+1) = R^{rN\left(1-\frac{N}{K}\right)\left(\frac{N-A}{K}\right)}N(t)$$

- 3 équilibria:
 - Species absent: $\overline{N} = 0$ (stable)
 - Allee threshold: $\overline{N} = A$ (unstable)
 - Carrying capacity: $\overline{N} = K$ (unstable)
- Extinction ($\overline{N} = 0$) is globally asymptotically stable (for this parameter set)



Schreiber (2001). Chaos and population disappearances in simple ecological models. *Journal of Mathematical Biology*

Ricker model with Allee effect

• Example:

$$N(t+1) = R^{rN\left(1-\frac{N}{K}\right)\left(\frac{N-A}{K}\right)}N(t)$$

- 3 équilibria:
 - Species absent: $\overline{N} = 0$ (stable)
 - Allee threshold: $\overline{N} = A$ (unstable)
 - Carrying capacity: $\overline{N} = K$ (unstable)
- Extinction ($\overline{N} = 0$) is globally asymptotically stable (for this parameter set)

Transient dynamics and extinction

