Poisson Processes Poisson Random Measures

Étienne Pardoux

Aix Marseille Université

MoCLiS, Dschang, Nov. 24, 2025

The Poisson Process

- Recall that for a>0, a r.v. $X\sim Poi(a)$ if $\mathbb{P}(X=k)=\frac{a^k}{k!}e^{-a}$. Then $\mathbb{E}[X]=a$, Var(X)=a, and for $s\in\mathbb{R}$, $\mathbb{E}s^X=e^{a(s-1)}$.
- Given $\lambda > 0$, a rate λ Poisson process $\{P_t, \ t \geq 0\}$ is an \mathbb{N} -valued random process whose increments on disjoint intervals are independent, and for $0 \leq s < t, \ P_t P_s \sim Poi(\lambda(t-s))$.
- This means that P_t counts a Poissonian random number of points on the interval [0, t].

The Poisson Process

- Recall that for a>0, a r.v. $X\sim Poi(a)$ if $\mathbb{P}(X=k)=\frac{a^k}{k!}e^{-a}$. Then $\mathbb{E}[X]=a$, Var(X)=a, and for $s\in\mathbb{R}$, $\mathbb{E}s^X=e^{a(s-1)}$.
- Given $\lambda > 0$, a rate λ Poisson process $\{P_t, t \geq 0\}$ is an \mathbb{N} -valued random process whose increments on disjoint intervals are independent, and for $0 \leq s < t$, $P_t P_s \sim Poi(\lambda(t s))$.
- This means that P_t counts a Poissonian random number of points on the interval [0, t].

The Poisson Process

- Recall that for a>0, a r.v. $X\sim Poi(a)$ if $\mathbb{P}(X=k)=\frac{a^k}{k!}e^{-a}$. Then $\mathbb{E}[X]=a$, Var(X)=a, and for $s\in\mathbb{R}$, $\mathbb{E}s^X=e^{a(s-1)}$.
- Given $\lambda > 0$, a rate λ Poisson process $\{P_t, t \geq 0\}$ is an \mathbb{N} -valued random process whose increments on disjoint intervals are independent, and for $0 \leq s < t$, $P_t P_s \sim Poi(\lambda(t s))$.
- This means that P_t counts a Poissonian random number of points on the interval [0, t].

- ullet I will consider only *standard* Poisson random measures on \mathbb{R}^2_+ .
- A (standard) Poisson random measure Q on \mathbb{R}^2_+ is a sum of Dirac measures at random points in \mathbb{R}^2_+ , which is such that
 - ① For any Borel subset $A \subset \mathbb{R}^2_+$, $Q(A) \sim Poi(Leb(A))$
 - ② For any disjoint subsets $A_1, A_2, ..., A_n \subset \mathbb{R}^2_+$, the r.v.s $Q(A_1), Q(A_2), ..., Q(A_n)$ are independent.
- For any $\lambda > 0$,

$$\left\{\int_0^t\int_0^\infty 1_{u\leq \lambda}Q(extit{d} s, extit{d} u)=Q([0,t] imes[0,\lambda]),\,\,t\geq 0
ight\}$$

is a rate λ Poisson process

ullet If $arphi:\mathbb{R}_+\mapsto\mathbb{R}_+$ is measurable and locally integrable on \mathbb{R}_+

$$\int_0^t \int_0^\infty 1_{u \leq \varphi(s)} Q(ds, du) = \int_0^t \int_0^{\varphi(s)} Q(ds, du) \sim Poi\left(\int_0^t \varphi(s) ds\right)$$

- ullet I will consider only *standard* Poisson random measures on \mathbb{R}^2_+ .
- A (standard) Poisson random measure Q on \mathbb{R}^2_+ is a sum of Dirac measures at random points in \mathbb{R}^2_+ , which is such that
 - **①** For any Borel subset $A \subset \mathbb{R}^2_+$, $Q(A) \sim Poi(Leb(A))$.
 - ② For any disjoint subsets $A_1, A_2, \ldots, A_n \subset \mathbb{R}^2_+$, the r.v.s $Q(A_1), Q(A_2), \ldots, Q(A_n)$ are independent.
- For any $\lambda > 0$,

$$\left\{\int_0^t \int_0^\infty 1_{u \le \lambda} Q(ds, du) = Q([0, t] \times [0, \lambda]), \ t \ge 0\right\}$$

is a rate λ Poisson process

• If $\varphi: \mathbb{R}_+ \mapsto \mathbb{R}_+$ is measurable and locally integrable on \mathbb{R}_+

$$\int_0^t \int_0^\infty 1_{u \le \varphi(s)} Q(ds, du) = \int_0^t \int_0^{\varphi(s)} Q(ds, du) \sim Poi\left(\int_0^t \varphi(s) ds\right)$$

- ullet I will consider only *standard* Poisson random measures on \mathbb{R}^2_+ .
- A (standard) Poisson random measure Q on \mathbb{R}^2_+ is a sum of Dirac measures at random points in \mathbb{R}^2_+ , which is such that
 - **①** For any Borel subset $A \subset \mathbb{R}^2_+$, $Q(A) \sim Poi(Leb(A))$.
 - ② For any disjoint subsets $A_1, A_2, \ldots, A_n \subset \mathbb{R}^2_+$, the r.v.s $Q(A_1), Q(A_2), \ldots, Q(A_n)$ are independent.
- For any $\lambda > 0$,

$$\left\{\int_0^t\int_0^\infty 1_{u\leq\lambda}Q(ds,du)=Q([0,t] imes[0,\lambda]),\ t\geq0
ight\}$$

is a rate λ Poisson process.

• If $\varphi: \mathbb{R}_+ \mapsto \mathbb{R}_+$ is measurable and locally integrable on \mathbb{R}_+

$$\int_0^t \int_0^\infty 1_{u \leq \varphi(s)} Q(ds,du) = \int_0^t \int_0^{\varphi(s)} Q(ds,du) \sim \operatorname{Poi}\left(\int_0^t \varphi(s)ds\right)$$

- ullet I will consider only *standard* Poisson random measures on \mathbb{R}^2_+ .
- A (standard) Poisson random measure Q on \mathbb{R}^2_+ is a sum of Dirac measures at random points in \mathbb{R}^2_+ , which is such that
 - **1** For any Borel subset $A \subset \mathbb{R}^2_+$, $Q(A) \sim Poi(Leb(A))$.
 - ② For any disjoint subsets $A_1, A_2, \ldots, A_n \subset \mathbb{R}^2_+$, the r.v.s $Q(A_1), Q(A_2), \ldots, Q(A_n)$ are independent.
- For any $\lambda > 0$,

$$\left\{\int_0^t \int_0^\infty 1_{u \leq \lambda} Q(ds, du) = Q([0, t] \times [0, \lambda]), \ t \geq 0\right\}$$

is a rate λ Poisson process.

ullet If $arphi:\mathbb{R}_+\mapsto\mathbb{R}_+$ is measurable and locally integrable on \mathbb{R}_+ ,

$$\int_0^t \int_0^\infty 1_{u \leq \varphi(s)} \mathit{Q}(\mathit{d} s, \mathit{d} u) = \int_0^t \int_0^{\varphi(s)} \mathit{Q}(\mathit{d} s, \mathit{d} u) \sim \mathit{Poi}\left(\int_0^t \varphi(s) \mathit{d} s\right) \,.$$

A martingale

• We define the compensated measure $\bar{Q}(ds,du)=Q(ds,du)-ds\,du.$ Then

$$M_t = \int_0^t \int_0^{arphi(s)} ar{Q}(ds,du)$$

is a process with zero mean independent increments, hence a martingale. With $< M>_t:=\int_0^t \varphi(s)ds,\ M_t^2-< M>_t$ is also a martingale, hence $\mathbb{E}[M_t^2]=\int_0^t \varphi(s)ds.$

• Note that the mean and the variance of $\int_0^\tau \int_0^{\varphi(s)} Q(ds, du)$ are equal, since it is a Poisson r.v.

A martingale

• We define the compensated measure $\bar{Q}(ds,du)=Q(ds,du)-ds\,du.$ Then

$$M_t = \int_0^t \int_0^{\varphi(s)} \bar{Q}(ds, du)$$

is a process with zero mean independent increments, hence a martingale. With $< M>_t := \int_0^t \varphi(s)ds$, $M_t^2 - < M>_t$ is also a martingale, hence $\mathbb{E}[M_t^2] = \int_0^t \varphi(s)ds$.

• Note that the mean and the variance of $\int_0^t \int_0^{\varphi(s)} Q(ds, du)$ are equal, since it is a Poisson r.v.

Generalization

- We want now to consider the same objects, but with φ random. If φ and Q are independent, provided $\mathbb{E} \int_0^T \varphi(s) ds < \infty$, $\forall T > 0$, again M_t and $M_t^2 \langle M \rangle_t$ are martingales.
- The same is still true without the independence assumption, provide that $\varphi(t)$ and $Q|_{[t,+\infty)\times\mathbb{R}_+}$ are independent for all t. The proper assumption is that $\varphi(t)$ should be predictable w.r.t. a filtration \mathcal{F}_t such that $Q|_{[0,t]\times\mathbb{R}_+}$ is \mathcal{F}_t -measurable, $\forall t\geq 0$.
- In what follows, $\varphi(t)$ will be independent of $Q|_{(t,+\infty)\times\mathbb{R}_+}$, not of $Q|_{[t,+\infty)\times\mathbb{R}_+}$. For that reason, we shall consider rather the process $\int_0^t \int_0^{\varphi(s^-)} Q(ds,du)$. Hence the martingales will be

$$M_t = \int_0^t \int_0^{\varphi(s^-)} \bar{Q}(ds, du), \quad \langle M \rangle_t = \int_0^t \varphi(s) ds.$$

Hence in particular $\mathbb{E}[M_t^2] = \mathbb{E} \int_0^t \varphi(s) ds$

Generalization

- We want now to consider the same objects, but with φ random. If φ and Q are independent, provided $\mathbb{E} \int_0^T \varphi(s) ds < \infty$, $\forall T > 0$, again M_t and $M_t^2 < M >_t$ are martingales.
- The same is still true without the independence assumption, provided that $\varphi(t)$ and $Q|_{[t,+\infty)\times\mathbb{R}_+}$ are independent for all t. The proper assumption is that $\varphi(t)$ should be predictable w.r.t. a filtration \mathcal{F}_t such that $Q|_{[0,t]\times\mathbb{R}_+}$ is \mathcal{F}_t -measurable, $\forall t\geq 0$.
- In what follows, $\varphi(t)$ will be independent of $Q|_{(t,+\infty)\times\mathbb{R}_+}$, not of $Q|_{[t,+\infty)\times\mathbb{R}_+}$. For that reason, we shall consider rather the process $\int_0^t \int_0^{\varphi(s^-)} Q(ds,du)$. Hence the martingales will be

$$M_t = \int_0^t \int_0^{\varphi(s^-)} \bar{Q}(ds, du), \quad < M >_t = \int_0^t \varphi(s) ds.$$

Hence in particular $\mathbb{E}[M_t^2] = \mathbb{E} \int_0^t \varphi(s) ds$

Generalization

- We want now to consider the same objects, but with φ random. If φ and Q are independent, provided $\mathbb{E} \int_0^T \varphi(s) ds < \infty$, $\forall T > 0$, again M_t and $M_t^2 \langle M \rangle_t$ are martingales.
- The same is still true without the independence assumption, provided that $\varphi(t)$ and $Q|_{[t,+\infty)\times\mathbb{R}_+}$ are independent for all t. The proper assumption is that $\varphi(t)$ should be predictable w.r.t. a filtration \mathcal{F}_t such that $Q|_{[0,t]\times\mathbb{R}_+}$ is \mathcal{F}_t -measurable, $\forall t\geq 0$.
- In what follows, $\varphi(t)$ will be independent of $Q|_{(t,+\infty)\times\mathbb{R}_+}$, not of $Q|_{[t,+\infty)\times\mathbb{R}_+}$. For that reason, we shall consider rather the process $\int_0^t \int_0^{\varphi(s^-)} Q(ds,du)$. Hence the martingales will be

$$M_t = \int_0^t \int_0^{\varphi(s^-)} \bar{Q}(ds, du), \quad < M >_t = \int_0^t \varphi(s) ds.$$

Hence in particular $\mathbb{E}[M_t^2] = \mathbb{E} \int_0^t \varphi(s) ds$.