The early stage of an outbreak

Étienne Pardoux

EMA Abidjan

- "Birth" in a branching process is "infection" in the epidemic.
- The rate at which an individual gives birth is age dependent. Before being adult this rate is 0. Then it increases and reaches a maximum before decreasing with the age.
- So it is tempting to consider the evolution of the epidemic as a branching process. But the branching property is violated!
- Consider two infectious individuals. Their descendance are not independent, since whenever the two try to infect the same susceptible indiv. only one of the two may succeed.

- "Birth" in a branching process is "infection" in the epidemic.
- The rate at which an individual gives birth is age dependent. Before being adult this rate is 0. Then it increases and reaches a maximum, before decreasing with the age.
- So it is tempting to consider the evolution of the epidemic as a branching process. But the branching property is violated!
- Consider two infectious individuals. Their descendance are not independent, since whenever the two try to infect the same susceptible indiv. only one of the two may succeed.

- "Birth" in a branching process is "infection" in the epidemic.
- The rate at which an individual gives birth is age dependent. Before being adult this rate is 0. Then it increases and reaches a maximum, before decreasing with the age.
- So it is tempting to consider the evolution of the epidemic as a branching process. But the branching property is violated!
- Consider two infectious individuals. Their descendance are not independent, since whenever the two try to infect the same susceptible indiv. only one of the two may succeed.

- "Birth" in a branching process is "infection" in the epidemic.
- The rate at which an individual gives birth is age dependent. Before being adult this rate is 0. Then it increases and reaches a maximum, before decreasing with the age.
- So it is tempting to consider the evolution of the epidemic as a branching process. But the branching property is violated!
- Consider two infectious individuals. Their descendance are not independent, since whenever the two try to infect the same susceptible indiv. only one of the two may succeed.

- Suppose that the total population N is large, and that the number of infectious k = k(N) is of smaller order.
- We consider the varying infectivity epidemic model. If $\lambda(t)$ were deterministic, the law of the # of infections generated by one infectious would be $\operatorname{Poi}(\int_0^\infty \lambda(t)dt)$. Otherwise, we call that law $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$.
- Consider the Galton Watson process with offspring distribution $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$. The mean number of offspring is $R_0 = \int_0^\infty \mathbb{E}[\lambda(t)]dt$.
- Let $\{\lambda_i(t), t \geq 0\}_{i=0,1,\dots}$ a sequence of i.i.d. copies of $\lambda(t)$, $\{Q_i, i=0,1,\dots\}$ an i.i.d. sequence of standard PRMs on \mathbb{R}^2_+ , $\{U_i, i=1,2,\dots\}$ an i.i.d. sequence of r.v. $\mathcal{U}([0,1])$, the three being mutually independent.
 - We also define the r.v. $\eta_i = \sup\{t, \ \lambda_i(t) > 0\}, \ i \geq 0$.

- Suppose that the total population N is large, and that the number of infectious k = k(N) is of smaller order.
- We consider the varying infectivity epidemic model. If $\lambda(t)$ were deterministic, the law of the # of infections generated by one infectious would be $\operatorname{Poi}(\int_0^\infty \lambda(t)dt)$. Otherwise, we call that law $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$.
- Consider the Galton Watson process with offspring distribution $\text{MixPoi}(\int_0^\infty \lambda(t)dt)$. The mean number of offspring is $R_0 = \int_0^\infty \mathbb{E}[\lambda(t)]dt$.
- Let $\{\lambda_i(t), t \geq 0\}_{i=0,1,\dots}$ a sequence of i.i.d. copies of $\lambda(t)$, $\{Q_i, i=0,1,\dots\}$ an i.i.d. sequence of standard PRMs on \mathbb{R}^2_+ , $\{U_i, i=1,2,\dots\}$ an i.i.d. sequence of r.v. $\mathcal{U}([0,1])$, the three being mutually independent.
 - We also define the r.v. $\eta_i = \sup\{t, \ \lambda_i(t) > 0\}, \ i \geq 0$.

- Suppose that the total population N is large, and that the number of infectious k = k(N) is of smaller order.
- We consider the varying infectivity epidemic model. If $\lambda(t)$ were deterministic, the law of the # of infections generated by one infectious would be $\operatorname{Poi}(\int_0^\infty \lambda(t)dt)$. Otherwise, we call that law $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$.
- Consider the Galton Watson process with offspring distribution $\text{MixPoi}(\int_0^\infty \lambda(t)dt)$. The mean number of offspring is $R_0 = \int_0^\infty \mathbb{E}[\lambda(t)]dt$.
- Let $\{\lambda_i(t), t \geq 0\}_{i=0,1,\dots}$ a sequence of i.i.d. copies of $\lambda(t)$, $\{Q_i, i=0,1,\dots\}$ an i.i.d. sequence of standard PRMs on \mathbb{R}^2_+ , $\{U_i, i=1,2,\dots\}$ an i.i.d. sequence of r.v. $\mathcal{U}([0,1])$, the three being mutually independent.
 - We also define the r.v. $\eta_i = \sup\{t, \ \lambda_i(t) > 0\}, \ i \geq 0$.

- Suppose that the total population N is large, and that the number of infectious k = k(N) is of smaller order.
- We consider the varying infectivity epidemic model. If $\lambda(t)$ were deterministic, the law of the # of infections generated by one infectious would be $\operatorname{Poi}(\int_0^\infty \lambda(t)dt)$. Otherwise, we call that law $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$.
- Consider the Galton Watson process with offspring distribution $\text{MixPoi}(\int_0^\infty \lambda(t)dt)$. The mean number of offspring is $R_0 = \int_0^\infty \mathbb{E}[\lambda(t)]dt$.
- Let $\{\lambda_i(t), t \geq 0\}_{i=0,1,\dots}$ a sequence of i.i.d. copies of $\lambda(t)$, $\{Q_i, i=0,1,\dots\}$ an i.i.d. sequence of standard PRMs on \mathbb{R}^2_+ , $\{U_i, i=1,2,\dots\}$ an i.i.d. sequence of r.v. $\mathcal{U}([0,1])$, the three being mutually independent.
 - We also define the r.v. $\eta_i = \sup\{t, \ \lambda_i(t) > 0\}, \ i \geq 0$.

Exercise

Compute the offspring distribution when

$$\lambda(t) = \lambda 1_{\mathcal{L} \le t < \mathcal{L} + \mathcal{I}}(t),$$

with $\lambda > 0$ given, in the two cases \mathcal{I} deterministic, and $\mathcal{I} \sim \textit{Exp}(\mu)$.

• We start with an ancestor with label 0, to which we attach the pair (λ_0, Q_0) . The ancestor gives birth at the jump times of the process

$$\int_0^t \int_0^\infty 1_{u \leq \lambda_0(s)} Q_0(ds, du),$$

which we label $\tau_{0,1}, \tau_{0,2}, \ldots$

- The first born indiv. at time $T_1=\tau_{0,1}$ is given the label 1 and attached (λ_1,Q_1) , which describe the descent of indiv. 1, with births at times $T_1+\tau_{1,1},T_1+\tau_{1,2},\ldots$
- The second born individual is born at time $T_2 = \inf\{\tau_{0,2}, T_1 + \tau_{1,1}\}$, to which is attached (λ_2, Q_2) , hence the descent at times $T_2 + \tau_{2,1}, T_2 + \tau_{2,2}, \ldots$
- The third born individual is born at time

$$\mathcal{T}_3 = \begin{cases} \inf\{\tau_{0,3}, \, T_1 + \tau_{1,1}, \, T_2 + \tau_{2,1}\}, & \text{if } T_2 = \tau_{0,2}, \\ \inf\{\tau_{0,2}, \, T_1 + \tau_{1,2}, \, T_2 + \tau_{2,1}\}, & \text{if } T_2 = T_1 + \tau_{1,1} \, . \end{cases}$$

• We start with an ancestor with label 0, to which we attach the pair (λ_0, Q_0) . The ancestor gives birth at the jump times of the process

$$\int_0^t \int_0^\infty 1_{u \leq \lambda_0(s)} Q_0(ds, du),$$

which we label $\tau_{0,1}, \tau_{0,2}, \ldots$

- The first born indiv. at time $T_1=\tau_{0,1}$ is given the label 1 and attached (λ_1,Q_1) , which describe the descent of indiv. 1, with births at times $T_1+\tau_{1,1},T_1+\tau_{1,2},\ldots$
- The second born individual is born at time $T_2 = \inf\{\tau_{0,2}, T_1 + \tau_{1,1}\}$ to which is attached (λ_2, Q_2) , hence the descent at times $T_2 + \tau_{2,1}, T_2 + \tau_{2,2}, \ldots$
- The third born individual is born at time

$$T_3 = \begin{cases} \inf\{\tau_{0,3}, \, T_1 + \tau_{1,1}, \, T_2 + \tau_{2,1}\}, & \text{if } T_2 = \tau_{0,2}, \\ \inf\{\tau_{0,2}, \, T_1 + \tau_{1,2}, \, T_2 + \tau_{2,1}\}, & \text{if } T_2 = T_1 + \tau_{1,1}. \end{cases}$$

etc.

• We start with an ancestor with label 0, to which we attach the pair (λ_0, Q_0) . The ancestor gives birth at the jump times of the process

$$\int_0^t \int_0^\infty 1_{u \leq \lambda_0(s)} Q_0(ds, du),$$

which we label $\tau_{0,1}, \tau_{0,2}, \ldots$

- The first born indiv. at time $T_1=\tau_{0,1}$ is given the label 1 and attached (λ_1,Q_1) , which describe the descent of indiv. 1, with births at times $T_1+\tau_{1,1},T_1+\tau_{1,2},\ldots$
- The second born individual is born at time $T_2 = \inf\{\tau_{0,2}, T_1 + \tau_{1,1}\}$, to which is attached (λ_2, Q_2) , hence the descent at times $T_2 + \tau_{2,1}, T_2 + \tau_{2,2}, \ldots$
- The third born individual is born at time

$$T_3 = \begin{cases} \inf\{\tau_{0,3}, \, T_1 + \tau_{1,1}, \, T_2 + \tau_{2,1}\}, & \text{if } T_2 = \tau_{0,2}, \\ \inf\{\tau_{0,2}, \, T_1 + \tau_{1,2}, \, T_2 + \tau_{2,1}\}, & \text{if } T_2 = T_1 + \tau_{1,1} \, . \end{cases}$$

etc.

• We start with an ancestor with label 0, to which we attach the pair (λ_0, Q_0) . The ancestor gives birth at the jump times of the process

$$\int_0^t \int_0^\infty 1_{u \leq \lambda_0(s)} Q_0(ds, du),$$

which we label $\tau_{0,1}, \tau_{0,2}, \ldots$

- The first born indiv. at time $T_1=\tau_{0,1}$ is given the label 1 and attached (λ_1,Q_1) , which describe the descent of indiv. 1, with births at times $T_1+\tau_{1,1},T_1+\tau_{1,2},\ldots$
- The second born individual is born at time $T_2 = \inf\{\tau_{0,2}, T_1 + \tau_{1,1}\}$, to which is attached (λ_2, Q_2) , hence the descent at times $T_2 + \tau_{2,1}, T_2 + \tau_{2,2}, \ldots$
- The third born individual is born at time

$$T_3 = \begin{cases} \inf\{\tau_{0,3}, T_1 + \tau_{1,1}, T_2 + \tau_{2,1}\}, & \text{if } T_2 = \tau_{0,2}, \\ \inf\{\tau_{0,2}, T_1 + \tau_{1,2}, T_2 + \tau_{2,1}\}, & \text{if } T_2 = T_1 + \tau_{1,1}. \end{cases}$$

etc.

• We now define (with $T_0 = 0$) for t > 0:

$$egin{aligned} I(t) &= \sum_{i \geq 0} \mathbb{1}_{\mathcal{T}_i \leq t < \mathcal{T}_i + \eta_i}, \ R(t) &= \sum_{i \geq 0} \mathbb{1}_{\mathcal{T}_i + \eta_i \leq t} \,. \end{aligned}$$

• Note that those processes do not depend upon N!

• We now define (with $T_0 = 0$) for t > 0:

$$egin{aligned} I(t) &= \sum_{i \geq 0} 1_{\mathcal{T}_i \leq t < \mathcal{T}_i + \eta_i}, \ R(t) &= \sum_{i \geq 0} 1_{\mathcal{T}_i + \eta_i \leq t} \,. \end{aligned}$$

• Note that those processes do not depend upon N!

- Initially we have N susceptibles + one indiv. (= the ancestor of the BP) who is infected at time 0, to which is attached (λ_0, Q_0) . The first infectious contact is with the individual $[U_1N] + 1$. This is individual 1, to which is attached (λ_1, Q_1) .
- The second potential infection hits individual $[U_2N]+1$. If $[U_2N]+1=[U_1N]+1$, then nothing happens: we say that a *ghost* has been infected. Otherwise, $[U_2N]+1$ is the second infected individual, to which is attached (λ_2,Q_2) as in the branching process.
- We go on. When the contact is with an already infected individual, we say that a *ghost* appears, and the corresponding descent in the branching process is suppressed.

- Initially we have N susceptibles + one indiv. (= the ancestor of the BP) who is infected at time 0, to which is attached (λ_0, Q_0) . The first infectious contact is with the individual $[U_1N]+1$. This is individual 1, to which is attached (λ_1, Q_1) .
- The second potential infection hits individual $[U_2N]+1$. If $[U_2N]+1=[U_1N]+1$, then nothing happens: we say that a *ghost* has been infected. Otherwise, $[U_2N]+1$ is the second infected individual, to which is attached (λ_2, Q_2) as in the branching process.
- We go on. When the contact is with an already infected individual, we say that a *ghost* appears, and the corresponding descent in the branching process is suppressed.

- Initially we have N susceptibles + one indiv. (= the ancestor of the BP) who is infected at time 0, to which is attached (λ_0, Q_0) . The first infectious contact is with the individual $[U_1N]+1$. This is individual 1, to which is attached (λ_1, Q_1) .
- The second potential infection hits individual $[U_2N] + 1$. If $[U_2N] + 1 = [U_1N] + 1$, then nothing happens: we say that a *ghost* has been infected. Otherwise, $[U_2N] + 1$ is the second infected individual, to which is attached (λ_2, Q_2) as in the branching process.
- We go on. When the contact is with an already infected individual, we say that a *ghost* appears, and the corresponding descent in the branching process is suppressed.

- Let $\{i_j,\ j=0,1,2,\ldots\}$ denote the strictly increasing sequence starting from $i_0=0,\ i_1=1$ and such that for $j\geq 2$, $[U_{i_j}N]+1\not\in \cup_{1\leq k< i_j}\{[U_kN]+1\}$, i.e. the i_j -th birth in the BP does not create a ghost in the N-epidemic.
- At time 0, we have $(S^N(0), I^N(0), R^N(0)) = (N, 1, 0)$. At each time T_{i_j} , $j \ge 1$, S^N decreases by 1 and I^N increases by 1. At each time $T_{i_j} + \eta_{i_j}$, $j \ge 0$, I^N decreases by 1 and R^N increases by 1. Recall that $\eta_{i_j} = \sup\{t > 0, \ \lambda_{i_j}(t) > 0\}$.
- The epidemic goes on until $I^N(t) = 0$. The final size equals the value of $R^N(t)$ at that time. Note that for all times, $S^N(t) + I^N(t) + R^N(t) = N + 1$.
- We have constructed the BP and the *N*-epidemic for all values of *N* jointly on the same probability space.

- Let $\{i_j,\ j=0,1,2,\ldots\}$ denote the strictly increasing sequence starting from $i_0=0,\ i_1=1$ and such that for $j\geq 2$, $[U_{i_j}N]+1\not\in \cup_{1\leq k< i_j}\{[U_kN]+1\}$, i.e. the i_j -th birth in the BP does not create a ghost in the N-epidemic.
- At time 0, we have $(S^N(0), I^N(0), R^N(0)) = (N, 1, 0)$. At each time T_{i_j} , $j \ge 1$, S^N decreases by 1 and I^N increases by 1. At each time $T_{i_j} + \eta_{i_j}$, $j \ge 0$, I^N decreases by 1 and R^N increases by 1. Recall that $\eta_{i_j} = \sup\{t > 0, \ \lambda_{i_j}(t) > 0\}$.
- The epidemic goes on until $I^N(t) = 0$. The final size equals the value of $R^N(t)$ at that time. Note that for all times, $S^N(t) + I^N(t) + R^N(t) = N + 1$.
- We have constructed the BP and the *N*-epidemic for all values of *N* jointly on the same probability space.

- Let $\{i_j,\ j=0,1,2,\ldots\}$ denote the strictly increasing sequence starting from $i_0=0,\ i_1=1$ and such that for $j\geq 2$, $[U_{i_j}N]+1\not\in \cup_{1\leq k< i_j}\{[U_kN]+1\}$, i.e. the i_j -th birth in the BP does not create a ghost in the N-epidemic.
- At time 0, we have $(S^N(0), I^N(0), R^N(0)) = (N, 1, 0)$. At each time T_{i_j} , $j \ge 1$, S^N decreases by 1 and I^N increases by 1. At each time $T_{i_j} + \eta_{i_j}$, $j \ge 0$, I^N decreases by 1 and R^N increases by 1. Recall that $\eta_{i_j} = \sup\{t > 0, \ \lambda_{i_j}(t) > 0\}$.
- The epidemic goes on until $I^N(t) = 0$. The final size equals the value of $R^N(t)$ at that time. Note that for all times, $S^N(t) + I^N(t) + R^N(t) = N + 1$.
- We have constructed the BP and the N-epidemic for all values of N
 jointly on the same probability space.

- Let $\{i_j,\ j=0,1,2,\ldots\}$ denote the strictly increasing sequence starting from $i_0=0,\ i_1=1$ and such that for $j\geq 2$, $[U_{i_j}N]+1\not\in \cup_{1\leq k< i_j}\{[U_kN]+1\}$, i.e. the i_j -th birth in the BP does not create a ghost in the N-epidemic.
- At time 0, we have $(S^N(0), I^N(0), R^N(0)) = (N, 1, 0)$. At each time T_{i_j} , $j \ge 1$, S^N decreases by 1 and I^N increases by 1. At each time $T_{i_j} + \eta_{i_j}$, $j \ge 0$, I^N decreases by 1 and R^N increases by 1. Recall that $\eta_{i_j} = \sup\{t > 0, \ \lambda_{i_j}(t) > 0\}$.
- The epidemic goes on until $I^N(t) = 0$. The final size equals the value of $R^N(t)$ at that time. Note that for all times, $S^N(t) + I^N(t) + R^N(t) = N + 1$.
- We have constructed the BP and the *N*-epidemic for all values of *N* jointly on the same probability space.

• The epidemic and the BP coincide until T^N = the time of appearance of the first ghost (= $+\infty$ in case no ghost appears). Let M^N denote the # of infections prior to the first ghost. We have

Theorem

For all $t \in [0, T^N)$, $(I^N(t), R^N(t)) = (I(t), R(t))$. Moreover, $T^N \to \infty$ in probability, as $N \to \infty$. The same is true for M^N , unless the BP is (sub)critical, in which case $\mathbb{P}(T^N = +\infty) \to 1$.

 Proof The first statement is obvious. To prove the second statement, we first compute

$$\mathbb{P}(M^N > k) = 1 \times \frac{N-1}{N} \times \dots \times \frac{N-k}{N} = \prod_{j=0}^k \left(1 - \frac{j}{N}\right)$$
$$\geq 1 - \sum_{j=1}^k \frac{j}{N} = 1 - \frac{k(k+1)}{2N}.$$

• The epidemic and the BP coincide until $T^N =$ the time of appearance of the first ghost (= $+\infty$ in case no ghost appears). Let M^N denote the # of infections prior to the first ghost. We have

Theorem

For all $t \in [0, T^N)$, $(I^N(t), R^N(t)) = (I(t), R(t))$. Moreover, $T^N \to \infty$ in probability, as $N \to \infty$. The same is true for M^N , unless the BP is (sub)critical, in which case $\mathbb{P}(T^N = +\infty) \to 1$.

• **Proof** The first statement is obvious. To prove the second statement, we first compute

$$\mathbb{P}(M^N > k) = 1 \times \frac{N-1}{N} \times \dots \times \frac{N-k}{N} = \prod_{j=0}^k \left(1 - \frac{j}{N}\right)$$
$$\geq 1 - \sum_{j=1}^k \frac{j}{N} = 1 - \frac{k(k+1)}{2N}.$$

- We have $\mathbb{P}(M^N > k) \ge 1 \frac{k(k+1)}{2N}$. So if $k(N) = o(\sqrt{N})$ (e.g. $k(N) = N^{1/3}$, $k(N) = \log(N)$), then $\mathbb{P}(M^N > k(N)) \to 1$, as $N \to \infty$.
- Let Z(t) be the # of indiv. born on [0,t] in the BP, and $Z^N(t) = N S^N(t)$. We have $Z^N(t) = Z(t)$ for $t < T^N$. Since $\mathbb{P}(M^N > k(N)) \to 1$, $\mathbb{P}(\inf\{t; Z(t) = k(N)\} \le T^N) \to 1$.
- If the BP is (sub)critical, then Z(t) remains bounded, and $\mathbb{P}(T^N=+\infty) o 1.$
- In the supercritical case, $\exists \rho > 0$ s.t. $\int_0^\infty \bar{\lambda}(t)e^{-\rho t}dt = 1$, $Z(t) \sim We^{\rho t}$, with $\{W = 0\} = Ext$. Now, with W' > W, $\mathbb{P}(k(N) \leq W'e^{\rho T^N}) \to 1$, hence $\mathbb{P}(T^N \geq \frac{\log k(N) \log W'}{\rho}) \to 1$, and $T^N \to \infty$ in probability.

- We have $\mathbb{P}(M^N > k) \ge 1 \frac{k(k+1)}{2N}$. So if $k(N) = o(\sqrt{N})$ (e.g. $k(N) = N^{1/3}$, $k(N) = \log(N)$), then $\mathbb{P}(M^N > k(N)) \to 1$, as $N \to \infty$.
- Let Z(t) be the # of indiv. born on [0,t] in the BP, and $Z^N(t) = N S^N(t)$. We have $Z^N(t) = Z(t)$ for $t < T^N$. Since $\mathbb{P}(M^N > k(N)) \to 1$, $\mathbb{P}(\inf\{t; Z(t) = k(N)\} \le T^N) \to 1$.
- If the BP is (sub)critical, then Z(t) remains bounded, and $\mathbb{P}(T^N=+\infty) \to 1$.
- In the supercritical case, $\exists \rho > 0$ s.t. $\int_0^\infty \bar{\lambda}(t)e^{-\rho t}dt = 1$, $Z(t) \sim We^{\rho t}$, with $\{W = 0\} = Ext$. Now, with W' > W, $\mathbb{P}(k(N) \leq W'e^{\rho T^N}) \to 1$, hence $\mathbb{P}(T^N \geq \frac{\log k(N) \log W'}{\rho}) \to 1$, and $T^N \to \infty$ in probability.

- We have $\mathbb{P}(M^N > k) \ge 1 \frac{k(k+1)}{2N}$. So if $k(N) = o(\sqrt{N})$ (e.g. $k(N) = N^{1/3}$, $k(N) = \log(N)$), then $\mathbb{P}(M^N > k(N)) \to 1$, as $N \to \infty$.
- Let Z(t) be the # of indiv. born on [0,t] in the BP, and $Z^N(t) = N S^N(t)$. We have $Z^N(t) = Z(t)$ for $t < T^N$. Since $\mathbb{P}(M^N > k(N)) \to 1$, $\mathbb{P}(\inf\{t; Z(t) = k(N)\} \le T^N) \to 1$.
- If the BP is (sub)critical, then Z(t) remains bounded, and $\mathbb{P}(T^N=+\infty) \to 1$.
- In the supercritical case, $\exists \rho > 0$ s.t. $\int_0^\infty \bar{\lambda}(t)e^{-\rho t}dt = 1$, $Z(t) \sim We^{\rho t}$, with $\{W = 0\} = Ext$. Now, with W' > W, $\mathbb{P}(k(N) \leq W'e^{\rho T^N}) \to 1$, hence $\mathbb{P}(T^N \geq \frac{\log k(N) \log W'}{\rho}) \to 1$, and $T^N \to \infty$ in probability.

- We have $\mathbb{P}(M^N > k) \ge 1 \frac{k(k+1)}{2N}$. So if $k(N) = o(\sqrt{N})$ (e.g. $k(N) = N^{1/3}$, $k(N) = \log(N)$), then $\mathbb{P}(M^N > k(N)) \to 1$, as $N \to \infty$.
- Let Z(t) be the # of indiv. born on [0,t] in the BP, and $Z^N(t) = N S^N(t)$. We have $Z^N(t) = Z(t)$ for $t < T^N$. Since $\mathbb{P}(M^N > k(N)) \to 1$, $\mathbb{P}(\inf\{t; Z(t) = k(N)\} \le T^N) \to 1$.
- If the BP is (sub)critical, then Z(t) remains bounded, and $\mathbb{P}(T^N=+\infty) \to 1$.
- In the supercritical case, $\exists \rho > 0$ s.t. $\int_0^\infty \bar{\lambda}(t)e^{-\rho t}dt = 1$, $Z(t) \sim We^{\rho t}$, with $\{W = 0\} = Ext$. Now, with W' > W, $\mathbb{P}(k(N) \leq W'e^{\rho T^N}) \to 1$, hence $\mathbb{P}(T^N \geq \frac{\log k(N) \log W'}{\rho}) \to 1$, and $T^N \to \infty$ in probability.

- Define $Z = Z(\infty)$, $Z^N = Z^N(\infty)$.
- We have first

Corollary

If $R_0 \leq 1$, then with probability converging to 1 as $N \to \infty$, $(I^N(t), R^N(t)) = (I(t), R(t))$ for all $t \geq 0$. And $\mathbb{P}(Z^N = k) \to \mathbb{P}(Z = k)$ for all $k \geq 1$.

We have next

Corollary

If
$$R_0>1$$
, then $\mathbb{P}(Z^N=k) o \mathbb{P}(Z=k)$ for all $k\geq 1$. Moreover

$$\mathbb{P}(\lim_{N} Z^{N} = +\infty) = \mathbb{P}(Z = +\infty) = 1 - \mathbb{P}(Ext).$$

- Define $Z = Z(\infty)$, $Z^N = Z^N(\infty)$.
- We have first :

Corollary

If $R_0 \le 1$, then with probability converging to 1 as $N \to \infty$, $(I^N(t), R^N(t)) = (I(t), R(t))$ for all $t \ge 0$. And $\mathbb{P}(Z^N = k) \to \mathbb{P}(Z = k)$ for all $k \ge 1$.

We have next

Corollary

If
$$R_0>1$$
, then $\mathbb{P}(Z^N=k) o \mathbb{P}(Z=k)$ for all $k\geq 1$. Moreover

$$\mathbb{P}(\lim_{N} Z^{N} = +\infty) = \mathbb{P}(Z = +\infty) = 1 - \mathbb{P}(Ext).$$

- Define $Z = Z(\infty)$, $Z^N = Z^N(\infty)$.
- We have first :

Corollary

If $R_0 \leq 1$, then with probability converging to 1 as $N \to \infty$, $(I^N(t), R^N(t)) = (I(t), R(t))$ for all $t \geq 0$. And $\mathbb{P}(Z^N = k) \to \mathbb{P}(Z = k)$ for all $k \geq 1$.

• We have next :

Corollary

If
$$R_0>1$$
, then $\mathbb{P}(Z^N=k)\to\mathbb{P}(Z=k)$ for all $k\geq 1$. Moreover $\mathbb{P}(\lim Z^N=+\infty)=\mathbb{P}(Z=+\infty)=1-\mathbb{P}(Ext)$.

- Define $Z = Z(\infty)$, $Z^N = Z^N(\infty)$.
- We have first :

Corollary

If $R_0 \leq 1$, then with probability converging to 1 as $N \to \infty$, $(I^N(t), R^N(t)) = (I(t), R(t))$ for all $t \geq 0$. And $\mathbb{P}(Z^N = k) \to \mathbb{P}(Z = k)$ for all $k \geq 1$.

• We have next :

Corollary

If
$$R_0 > 1$$
, then $\mathbb{P}(Z^N = k) \to \mathbb{P}(Z = k)$ for all $k \ge 1$. Moreover

$$\mathbb{P}(\lim_{M} Z^{N} = +\infty) = \mathbb{P}(Z = +\infty) = 1 - \mathbb{P}(Ext).$$

Probability of a major / minor epidemic

- If $R_0 \le 1$, then the BP goes extinct in finite time a.s. The N epidemic is upper bounded by the BP for all N, so there is no major outbreak, the proportion of the total number of individuals getting infected tends to 0 as N tends to 0.
- If $R_0 > 1$, with the probability $p_{Ext} \in (0,1)$, the BP goes extinct in finite time (in which case there is no major outbreak). With probability $1 p_{Ext}$, the BP goes off at exponential rate, and there is a major epidemic. How can we compute p_{Ext} ?
- p_{Ext} is also the probability of extinction of the discrete time BP, i.e. in is the solution of the equation g(s) = s, if g is the generating function of the number of offspring, which follows the $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$ distribution. If $X \sim \operatorname{Poi}(a)$, then $\mathbb{E}[s^X] = \exp([s-1]a)$. So $g(s) = \mathbb{E}\left\{\exp\left([s-1]\int_0^\infty \lambda(t)dt\right)\right\}$.

Probability of a major / minor epidemic

- If $R_0 \le 1$, then the BP goes extinct in finite time a.s. The N epidemic is upper bounded by the BP for all N, so there is no major outbreak, the proportion of the total number of individuals getting infected tends to 0 as N tends to 0.
- If $R_0 > 1$, with the probability $p_{E \times t} \in (0,1)$, the BP goes extinct in finite time (in which case there is no major outbreak). With probability $1 p_{E \times t}$, the BP goes off at exponential rate, and there is a major epidemic. How can we compute $p_{E \times t}$?
- p_{Ext} is also the probability of extinction of the discrete time BP, i.e. is the solution of the equation g(s) = s, if g is the generating function of the number of offspring, which follows the $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$ distribution. If $X \sim \operatorname{Poi}(a)$, then $\mathbb{E}[s^X] = \exp([s-1]a)$. So $g(s) = \mathbb{E}\left\{\exp\left([s-1]\int_0^\infty \lambda(t)dt\right)\right\}$.

Probability of a major / minor epidemic

- If $R_0 \le 1$, then the BP goes extinct in finite time a.s. The N epidemic is upper bounded by the BP for all N, so there is no major outbreak, the proportion of the total number of individuals getting infected tends to 0 as N tends to 0.
- If $R_0 > 1$, with the probability $p_{E \times t} \in (0,1)$, the BP goes extinct in finite time (in which case there is no major outbreak). With probability $1 p_{E \times t}$, the BP goes off at exponential rate, and there is a major epidemic. How can we compute $p_{E \times t}$?
- p_{Ext} is also the probability of extinction of the discrete time BP, i.e. it is the solution of the equation g(s) = s, if g is the generating function of the number of offspring, which follows the $\operatorname{MixPoi}(\int_0^\infty \lambda(t)dt)$ distribution. If $X \sim \operatorname{Poi}(a)$, then $\mathbb{E}[s^X] = \exp([s-1]a)$. So $g(s) = \mathbb{E}\left\{\exp\left([s-1]\int_0^\infty \lambda(t)dt\right)\right\}$.

Complements

Exercise Compute g(s) in the case of the Markov model, i.e. $\lambda(t) = \lambda 1_{t \leq \mathcal{I}}$, and \mathcal{I} follows the $\operatorname{Exp}(\mu)$ distribution. Compute p_{Ext} in that case.

Remark $p_{E\times t}$ does not depend only upon $R_0 = \int_0^\infty \bar{\lambda}(t)dt$!